Austenite Grain Growth Behavior of Q460GJD Steel During Heat Treatmentafter Multidirectional Forging
-
摘要: 对均匀化处理后的建筑用Q460GJD钢铸锭进行多向锻造和热处理,研究了多向锻造后的加热温度(950~1 250℃)和保温时间(0.5~8 h)对奥氏体晶粒长大行为的影响,基于Sellars模型,对试验数据拟合后建立了奥氏体晶粒长大模型。结果表明:铸态Q460GJD钢中的奥氏体晶粒尺寸差异较大,出现混晶现象,多向锻造后晶粒明显细化,混晶现象消除;随着热处理加热温度的升高或保温时间的延长,奥氏体平均晶粒尺寸增大,且加热温度对晶粒尺寸的影响大于保温时间;采用建立的奥氏体晶粒长大模型计算得到的平均晶粒尺寸与试验值相吻合,相对误差小于5%,表明该模型具有一定的可靠性。Abstract: The homogenized Q460GJD steel ingot for construction was multidirectionally forged and heat treated, and the effects of heating temperature (950-1 250℃) and holding time (0.5-8 h) on the austenite grain growth behavior after multidirectional forging were studied. Based on Sellars model, the austenite grain growth model was established after fitting the test data. The results show that the austenite grain size difference in as-cast Q460GJD steel was relatively large, and the mixed grains appeared. After multidirectional forging, the grain was obviously refined, and the mixed grains were eliminated. The average grain size of austenite increased with heating temperature or holding time, and the effect of heating temperature on the grain size was greater than that of holding time. The average grain size calculated by the established austenite grain growth model was in good agreement with the test value, and the relative error was less than 5%, indicating that the model had a certain reliability.
-
Keywords:
- Q460GJD steel /
- multidirectional forging /
- heating temperature /
- holding time /
- grain growth
-
-
[1] 郑治秀, 王强, 尹绍江, 等.高强度建筑用钢Q460GJD的开发与应用[J].宽厚板, 2021, 27(5):42-45. ZHENG Z X, WANG Q, YIN S J, et al.Development and application of Q460GJD high strength steel for construction[J].Wide and Heavy Plate, 2021, 27(5):42-45.
[2] 魏杰, 赵丽丽.钒钛微合金化对建筑用钢成形性能的影响[J].锻压技术, 2021, 46(11):244-249. WEI J, ZHAO L L.Influence of vanadium titanium microalloying on formability for construction steel[J].Forging & Stamping Technology, 2021, 46(11):244-249.
[3] 宋思颖, 田俊羽, 樊雷, 等.高性能建筑结构用钢Q460的动态和静态CCT曲线研究[J].武汉科技大学学报, 2021, 44(6):406-414. SONG S Y, TIAN J Y, FAN L, et al.Dynamic and static CCT curves of Q460 steel used for high performance building[J].Journal of Wuhan University of Science and Technology, 2021, 44(6):406-414.
[4] 袁昌望, 黄加进, 钟辉隆, 等.热冲压成形后22MnB5钢的组织与拉伸性能以及拉伸时的微观形貌演变[J].机械工程材料, 2021, 45(5):45-49. YUAN C W, HUANG J J, ZHONG H L, et al.Microstructure, tensile properties and micromorphology evolution during tensile of 22MnB5 steel after hot stamping[J].Materials for Mechanical Engineering, 2021, 45(5):45-49.
[5] CHEN R C, HONG C, LI J J, et al.Austenite grain growth and grain size distribution in isothermal heat-treatment of 300M steel[J].Procedia Engineering, 2017, 207:663-668.
[6] MA H C, ZHAO B J, FAN Y, et al.Simultaneously improving mechanical properties and stress corrosion cracking resistance of high-strength low-alloy steel via finish rolling within non-recrystallization temperature[J].Acta Metallurgica Sinica (English Letters), 2021, 34(4):565-578.
[7] 杨少朋, 尉文超, 胡芳忠, 等.低碳齿轮钢18CrNiMo7-6奥氏体晶粒度长大规律[J].材料导报, 2021, 35(8):8179-8183. YANG S P, YU W C, HU F Z, et al.The austenite grain growth behavior of low carbon gear steel 18CrNiMo7-6[J].Materials Reports, 2021, 35(8):8179-8183.
[8] SOLOVYEV I V, KHIMICHEVA E E, BELIKOV S V, et al. Effect of thermal deformation regimes on the austenite growth kinetics and recrystallization of medium carbon low-alloyed steel for large-sized steam turbine rotors[J].KnE Engineering, 2019, 1(1):27.
[9] YUAN Y, JIANG Y D, ZHOU J, et al.Influence of grain boundary character distribution and random high angle grain boundaries networks on intergranular corrosion in high purity copper[J].Materials Letters, 2019, 253:424-426.
[10] 宋明辉, 李艳梅, 赵春尧, 等.临氢设备用铬钼钢奥氏体晶粒长大规律的研究[J].金属材料与冶金工程, 2021, 49(3):10-16. SONG M H, LI Y M, ZHAO C Y, et al.Study on austenite growth law of Cr-Mo steel for hydrogen equipment[J].Metal Materials and Metallurgy Engineering, 2021, 49(3):10-16.
[11] ANNAN K, STUMPF W.Austenite grain growth kinetics after isothermal deformation in microalloyed steels with varying Nb concentrations[J].ISIJ International, 2018, 58:333-339.
[12] MAN Z, YU W, YANG H, et al.Effects of final cooling temperature on microstructure transformation and properties of Q550 low carbon bainite steel[J].Materials Science Forum, 2020, 993:550-558.
[13] 叶丽燕, 翟月雯, 周乐育, 等.超大型核电转子用25Cr2Ni4MoV钢静态晶粒长大行为研究[J].塑性工程学报, 2021, 28(4):146-151. YE L Y, ZHAI Y W, ZHOU L Y, et al.Study on static grain growth of 25Cr2Ni4MoV steel for super large nuclear power rotor[J].Journal of Plasticity Engineering, 2021, 28(4):146-151.
[14] 赵海东, 刘佳兴, 张朝磊, 等.矿用高强度链环钢23MnNiMoCr54奥氏体晶粒长大行为的研究[J].特殊钢, 2021, 42(2):10-13. ZHAO H D, LIU J X, ZHANG C L, et al.A study on austenite grain growth behaviour of high strength 23MnNiMoCr54 link-chain steel for mining[J].Special Steel, 2021, 42(2):10-13.
[15] DONG D Q, CHEN F, CUI Z S.Modeling of austenite grain growth during austenitization in a low alloy steel[J].Journal of Materials Engineering and Performance, 2016, 25(1):152-164.
[16] MIYOSHI E, TAKAKI T.Validation of a novel higher-order multi-phase-field model for grain-growth simulations using anisotropic grain-boundary properties[J].Computational Materials Science, 2016, 112:44-51.
[17] 乔士宾, 何西扣, 刘正东.SA508Gr.4N钢奥氏体晶粒长大行为研究[J].材料科学与工艺, 2021, 29(4):8-15. QIAO S B, HE X K, LIU Z D.Study on austenite grain growth behavior of SA508Gr.4N steel[J].Materials Science and Technology, 2021, 29(4):8-15.
[18] 曹云飞, 余伟, 刘敏, 等.38MnSiVS非调质钢奥氏体晶粒长大模型[J].钢铁, 2020, 55(5):103-108. CAO Y F, YU W, LIU M, et al.Austenite grain growth model of 38MnSiVS bearing microalloyed forging steel[J].Iron & Steel, 2020, 55(5):103-108.
[19] ZHANG Y, LI X H, LIU Y C, et al.Study of the kinetics of austenite grain growth by dynamic Ti-rich and Nb-rich carbonitride dissolution in HSLA steel:In situ observation and modeling[J].Materials Characterization, 2020, 169:110612.
计量
- 文章访问数: 5
- HTML全文浏览量: 0
- PDF下载量: 3