Selective Laser Melting Forming Process Optimization of 12Cr9NiAlMo DieSteel and Microstructure and Properties after Heat Treatment
-
摘要: 通过正交试验研究了激光功率、扫描间距、扫描速度等工艺参数对选区激光熔化成形12Cr9NiAlMo模具钢相对密度的影响,获得最佳工艺参数;研究了固溶时效处理后最优工艺成形试样的组织和性能。结果表明:激光功率对成形试样相对密度的影响程度最大,其次为扫描间距,最优工艺参数为激光功率325 W、扫描间距0.10 mm、扫描速度1 000 mm·s-1,此时相对密度为99.22%;热处理后最优工艺成形试样中部分残余奥氏体转变为马氏体,并析出大量细小NiAl相,抗拉强度、屈服强度和硬度相比于未热处理分别提高了62.1%,59.6%,41.2%,断后伸长率和冲击吸收功降低了40.0%,81.3%。
-
关键词:
- 12Cr9NiAlMo模具钢 /
- 选区激光熔化 /
- 固溶时效处理
Abstract: The influence of laser power, scanning spacing and scanning speed on the relative density of selective laser melting formed 12Cr9NiAlMo steel was studied by orthogonal experiments, and the optimal process parameters were obtained. The structure and properties of samples formed by the optimal process after solution and aging treatment were studied. The results show that the laser power had the greatest effect on the relative density of the formed samples, followed by the scanning spacing. The optimal process parameters were laser power of 325 W, scanning space of 0.10 mm, and scanning speed of 1 000 mm·s-1, and the relative density was 99.22%. After heat treatment, part of the residual austenite in samples formed by the optimal process was transformed to martensite, and a large number of fine NiAl phase precipitated. The tensile strength, yield strength and hardness increased by 62.1%, 59.6%, 41.2%, and the percentage elongation after fracture and impact absorbing energy decreased by 40.0%, 81.3%, comparing with those without heat-treatment. -
-
[1] 刘斌, 崔志杰, 谭景焕, 等.模具制造技术现状与发展趋势[J].模具工业, 2017, 43(11):1-8. LIU B, CUI Z J, TAN J H, et al.Development status and trend of die & mould manufacturing technology[J].Die & Mould Industry, 2017, 43(11):1-8.
[2] ALTAN T, LILLY B, YEN Y C, et al.Manufacturing of dies and molds[J].CIRP Annals, 2001, 50(2):404-422.
[3] 李冬梅, 韩敬宇.电火花加工技术在模具加工中精度问题分析及对策[J].内蒙古民族大学学报(自然科学版), 2007, 22(1):69-71. LI D M, HAN J Y.Study on the precision solution of technology of processing with the eltcric spark in mold industry[J].Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2007, 22(1):69-71.
[4] BAI Y C, YANG Y Q, WANG D, et al.Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting[J].Materials Science and Engineering:A, 2017, 703:116-123.
[5] WANG L, WEI Q S, XUE P J, et al. Fabricate mould insert with conformal cooling channel using selective laser melting[J]. Advanced Materials Research, 2012, 502:67-71.
[6] 黄文普, 喻寒琛, 殷杰, 等.激光选区熔化成形K4202镍基铸造高温合金的组织和性能[J].金属学报, 2016, 52(9):1089-1095. HUANG W P, YU H C, YIN J, et al.Microstructure and mechanical properties of K4202 cast nickel base superalloy fabricated by selective laser melting[J].Acta Metallurgica Sinica, 2016, 52(9):1089-1095.
[7] AWD M, SIDDIQUE S, JOHANNSEN J, et al.Very high-cycle fatigue properties and microstructural damage mechanisms of selective laser melted AlSi10Mg alloy[J].International Journal of Fatigue, 2019, 124:55-69.
[8] 张晓雅, 李现兵, 谈震, 等.激光选区熔化水雾化Cu-10Sn合金粉末成形件的微观组织结构及力学性能研究[J].中国激光, 2018, 45(10):1002009. ZHANG X Y, LI X B, TAN Z, et al.Microstructure and mechanical properties of water atomized Cu-10Sn alloy powder formed parts by selective laser melting[J].Chinese Journal of Lasers, 2018, 45(10):1002009. [9] LARIMIAN T, KANNAN M, GRZESIAK D, et al.Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting[J].Materials Science and Engineering:A, 2020, 770:138455.
[10] BHARDWAJ T, SHUKLA M.Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel[J].Materials Science and Engineering:A, 2018, 734:102-109.
[11] ZHAO X, WEI Q S, GAO N, et al.Rapid fabrication of TiN/AISI 420 stainless steel composite by selective laser melting additive manufacturing[J].Journal of Materials Processing Technology, 2019, 270:8-19.
[12] ASGARI H, MOHAMMADI M.Microstructure and mechanical properties of stainless steel CX manufactured by direct metal laser sintering[J].Materials Science and Engineering:A, 2018, 709:82-89.
[13] 魏恺文, 王泽敏, 曾晓雁.AZ91D镁合金在激光选区熔化成形中的元素烧损[J].金属学报, 2016, 52(2):184-190. WEI K W, WANG Z M, ZENG X Y.Element loss of AZ91D magnesium alloy during selective laser melting process[J].Acta Metallurgica Sinica, 2016, 52(2):184-190.
[14] 张佳琪, 王敏杰, 刘建业, 等.离焦量对3D打印18Ni-300马氏体时效钢组织和力学性能的影响[J].中国激光, 2020, 47(5):0502004. ZHANG J Q, WANG M J, LIU J Y, et al.Influence of defocusing distance on microstructure and mechanical properties of 3D-printed 18Ni-300 maraging steel[J].Chinese Journal of Lasers, 2020, 47(5):0502004. [15] 王硕, 刘玉德, 祁斌, 等.选区激光熔化316L大层厚成形工艺及性能研究[J].应用激光, 2017, 37(6):011401. WANG S, LIU Y D, QI B, et al.Study on the forming process and performance of 316L high layer thickness by selective laser melting[J].Applied Laser, 2017, 37(6):011401.
[16] GU D D, SHEN Y F.Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS[J].Journal of Alloys and Compounds, 2009, 473(1/2):107-115.
[17] 杨锦, 刘玉德, 石文天, 等.大层厚316L选区激光熔化工艺优化及性能研究[J].激光与光电子学进展, 2019, 56(1):011401. YANG J, LIU Y D, SHI W T, et al.Process optimization and performance investigation in selective laser melting of large layer-thickness 316L powder[J].Laser & Optoelectronics Progress, 2019, 56(1):011401. [18] 宗学文, 高倩, 周宏志, 等.体激光能量密度对选区激光熔化316L不锈钢各向异性的影响[J].中国激光, 2019, 46(5):0502003. ZONG X W, GAO Q, ZHOU H Z, et al.Effects of bulk laser energy density on anisotropy of selective laser sintered 316L stainless steel[J].Chinese Journal of Lasers, 2019, 46(5):0502003.
[19] ЛЯКИШЕВ Н П.金属二元系相图手册[M].郭青蔚, 译. 北京:化学工业出版社, 2009. ЛЯКИШЕВ Н П. Handbook of phase diagrams of metal binary systems[M].GUO Q W, tranl. Beijing:Chemical Industry Press, 2009.
[20] 陈帅, 陶凤和, 贾长治.选区激光熔化4Cr5MoSiV1模具钢显微组织及显微硬度研究[J].中国激光, 2019, 46(1):0102007. CHEN S, TAO F H, JIA C Z.Microstructure and micro-hardness of 4Cr5MoSiV1 die steels fabricated by selective laser melting[J].Chinese Journal of Lasers, 2019, 46(1):0102007. [21] FAKIC B, CUBELA D. Review of the development of research in the design of semi austenitic stainless steel 17-7PH[J]. Journal of Trends in the Development of Machinery & Associated T, 2013, 17(1):57-60.
[22] ZHANG J Q, WANG M J, NIU L H, et al.Effect of process parameters and heat treatment on the properties of stainless steel CX fabricated by selective laser melting[J].Journal of Alloys and Compounds, 2021, 877:160062.
[23] CHANG C, YAN X C, BOLOT R, et al.Influence of post-heat treatments on the mechanical properties of CX stainless steel fabricated by selective laser melting[J].Journal of Materials Science, 2020, 55(19):8303-8316.
计量
- 文章访问数: 4
- HTML全文浏览量: 0
- PDF下载量: 2