• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

选区激光熔化成形不同孔隙结构Ti-15Mo多孔合金的压缩特性

曾文灿, 陈荐, 任延杰, 周立波

曾文灿, 陈荐, 任延杰, 周立波. 选区激光熔化成形不同孔隙结构Ti-15Mo多孔合金的压缩特性[J]. 机械工程材料, 2022, 46(10): 61-67. DOI: 10.11973/jxgccl202210011
引用本文: 曾文灿, 陈荐, 任延杰, 周立波. 选区激光熔化成形不同孔隙结构Ti-15Mo多孔合金的压缩特性[J]. 机械工程材料, 2022, 46(10): 61-67. DOI: 10.11973/jxgccl202210011
ZENG Wencan, CHEN Jian, REN Yanjie, ZHOU Libo. Compression Properties of Ti-15Mo Porous Alloy with Different PoreStructures Formed by Selective Laser Melting[J]. Materials and Mechanical Engineering, 2022, 46(10): 61-67. DOI: 10.11973/jxgccl202210011
Citation: ZENG Wencan, CHEN Jian, REN Yanjie, ZHOU Libo. Compression Properties of Ti-15Mo Porous Alloy with Different PoreStructures Formed by Selective Laser Melting[J]. Materials and Mechanical Engineering, 2022, 46(10): 61-67. DOI: 10.11973/jxgccl202210011

选区激光熔化成形不同孔隙结构Ti-15Mo多孔合金的压缩特性

基金项目: 

国家自然科学基金资助项目(51975061)

详细信息
    作者简介:

    曾文灿(1996-),男,湖北仙桃人,硕士研究生

  • 中图分类号: TG115.5

Compression Properties of Ti-15Mo Porous Alloy with Different PoreStructures Formed by Selective Laser Melting

  • 摘要: 采用选区激光熔化(SLM)技术分别成形了均匀孔隙体心立方(UBCC)、面心立方(UFCC)及其相应梯度孔隙体心立方(GBCC)、面心立方(GFCC)结构Ti-15Mo多孔合金试样,研究了合金的微观形貌、压缩特性及吸能特性,并分析其压缩失效行为。结果表明:SLM成形4种孔隙结构多孔合金的弹性模量为0.3~1 GPa,压缩平台应力为28~48 MPa,与人体小梁骨(弹性模量0.2~5 GPa和抗压强度4~70 MPa)相近;UFCC及GFCC结构合金的弹性模量和抗压强度均高于UBCC及GBCC结构合金的,其中GFCC结构合金最高;梯度孔隙结构合金的吸能特性均优于均匀孔隙结构的,其中GFCC结构合金具有最高的吸能特性,其吸收能量总量为6.60 J·cm-3;均匀孔隙和梯度孔隙结构合金均在结点处发生应力集中而导致开裂。
    Abstract: The porous Ti-15Mo alloy samples with homogeneous pore body-centered cubic (UBCC), face-centered cubic (UFCC) and corresponding gradient pore body-centered cubic (GBCC), face-centered cubic (GFCC) structures were formed by selective laser melting (SLM). The microscopic morphology, compression deformation characteristics and energy absorption characteristics of the alloys were studied. The compression failure behavior was analyzed. The results show that the elastic modulus of SLM formed four kinds of pore structure porous alloys were 0.3-1 GPa and the compressive plateau stress was 28-48 MPa, which were similar to those of human trabecular bone (elastic modulus 0.2-5 GPa and compressive strength 4-70 MPa); the elastic modulus and compressive strength of UFCC and GFCC structure alloys were higher than those of UBCC and GBCC structure alloys, with GFCC structure alloy being the highest. The energy absorption characteristics of the gradient pore structure alloys were better than those of the uniform pore structure, and the GFCC structure alloy had the highest energy absorption characteristics, whose total absorption energy was 6.60 J·cm-3; Both uniform pore and gradient pore structure alloys caused cracking due to stress concentration at the junction.
  • [1]

    NIINOMI M, NAKAI M, HIEDA J.Development of new metallic alloys for biomedical applications[J].Acta Biomaterialia, 2012, 8(11):3888-3903.

    [2]

    LONG M, RACK H J.Titanium alloys in total joint replacement-A materials science perspective[J].Biomaterials, 1998, 19(18):1621-1639.

    [3]

    LI Y C, XIONG J Y, WONG C S, et al.Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering[J].Tissue Engineering.Part A, 2009, 15(10):3151-3159.

    [4]

    NIINOMI M.Mechanical properties of biomedical titanium alloys[J].Materials Science and Engineering:A, 1998, 243(1/2):231-236.

    [5]

    FARIA P E P, CARVALHO A L, FELIPUCCI D N B, et al.Bone formation following implantation of titanium sponge rods into humeral osteotomies in dogs:A histological and histometrical study[J].Clinical Implant Dentistry and Related Research, 2010, 12(1):72-79.

    [6]

    SARGEANT T D, GULER M O, OPPENHEIMER S M, et al.Hybrid bone implants:Self-assembly of peptide amphiphile nanofibers within porous titanium[J].Biomaterials, 2008, 29(2):161-171.

    [7]

    ATAEE A, LI Y, SONG G, et al.Metal scaffolds processed by electron beam melting for biomedical applications[M].Metallic Foam Bone.Amsterdam:Elsevier, 2017:83-110.

    [8]

    MUNIR K S, LI Y, WEN C.Metallic scaffolds manufactured by selective laser melting for biomedical applications[M].Metallic Foam Bone.Amsterdam:Elsevier, 2017:1-23.

    [9]

    MURR L E.Open-cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting[J].Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76:164-177.

    [10]

    FUKUDA A, TAKEMOTO M, SAITO T, et al.Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting[J].Acta Biomaterialia, 2011, 7(5):2327-2336.

    [11] 李卿, 赵国瑞, 闫星辰, 等.选区激光熔化成形多孔Ti-6Al-4V合金力学性能研究[J].激光与光电子学进展, 2019, 56(1):011403. LI Q, ZHAO G R, YAN X C, et al.Mechanical properties of porous Ti-6Al-4VTitanium alloys fabricated by selective laser melting[J].Laser & Optoelectronics Progress, 2019, 56(1):011403.
    [12]

    OKAZAKI Y, RAO S, ASAO S, et al.Effects of Ti, Al and V concentrations on cell viability[J].Materials Transactions, JIM, 1998, 39(10):1053-1062.

    [13]

    KURODA D, NIINOMI M, MORINAGA M, et al.Design and mechanical properties of new β type titanium alloys for implant materials[J].Materials Science and Engineering:A, 1998, 243(1/2):244-249.

    [14]

    NIINOMI M, LIU Y, NAKAI M, et al.Biomedical titanium alloys with Young's moduli close to that of cortical bone[J].Regenerative Biomaterials, 2016, 3(3):173-185.

    [15]

    YAN C Z, HAO L, HUSSEIN A, et al.Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting[J].Materials & Design, 2014, 55:533-541.

    [16]

    PYKA G, KERCKHOFS G, PAPANTONIOU I, et al.Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures[J].Materials (Basel, Switzerland), 2013, 6(10):4737-4757.

    [17]

    ASHBY M F.The properties of foams and lattices[J].Philosophical Transactions.Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364(1838):15-30.

计量
  • 文章访问数:  9
  • HTML全文浏览量:  2
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-28
  • 修回日期:  2022-08-02
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回