Effect of Rolling Deformation Amount on Microstructure and AntibacterialProperties of Silver-Containing Copper Alloy
-
摘要: 在室温下对含质量分数0.11%银的铜合金进行轧制,研究了轧制变形量(30%,50%,70%)对其组织和抗菌性能的影响。结果表明:含银铜合金的晶粒尺寸随轧制变形量的增加而减小,当轧制变形量为70%时,平均晶粒尺寸由未轧制的143 μm减小至1.4 μm,变形孪晶减少至基本消失;含银铜合金中存在纳米银颗粒,且偏聚在晶界处位错墙、位错缠结等缺陷密度较大区域,轧制后纳米银颗粒分布均匀;轧制有利于提高含银铜合金的抗菌性能,且变形量越大,抗菌性能越好,70%变形量轧制后含银铜合金与大肠杆菌悬液接触6 h时的抗菌率超过99.9%,且抗菌效果可持续12 h以上,这与提高轧制变形量可增加合金中的缺陷数量和晶界密度,促进纳米银颗粒的弥散分布有关。Abstract: Copper alloy with 0.11wt% silver was rolled at room temperature and the effect of rolling deformation amount (30%, 50%, 70%) on its structure and antimicrobial properties was studied. The results show that the grain size of the silver-containing copper alloy decreased with increasing rolling deformation. With rolling deformation amount of 70%, the average grain size decreased from 143 μm without rolling to 1.4 μm, and the deformation twins were reduted to almost vanishing. The nano-silver particles existed in silver-containing copper alloys and segregated in areas with high defect density such as dislocation wall and dislocation entanglement at grain boundaries, and after rolling nano-silver particles distributed uniformly. Rolling could improve the antimicrobial properties of silver-containing copper alloy, and the larger the deformation amount, the better the antimicrobial properties. The antimicrobial rate of the silver-containing copper alloy after rolling with 70% deformation amount in contact with Escherichia coli suspension for 6 h exceeded 99.9%, and the antimicrobial effect could last more than 12 h, which was related to the fact that increasing the rolling deformation amount could increase the number of defects and the density of grain boundaries in the alloy, and promote the dispersion distribution of nano-silver particles.
-
Keywords:
- silver-containing copper alloy /
- rolling /
- microstructure /
- antibacterial property
-
-
[1] 胡号旗, 许赪, 杨丽景, 等.高强高导铜铬锆合金的最新研究进展[J].材料导报, 2018, 32(3):453-460. HU H Q, XU C, YANG L J, et al.Recent advances in the research of high-strength and high-conductivity CuCrZr alloy[J].Materials Review, 2018, 32(3):453-460.
[2] 宋克兴, 周延军, 米绪军, 等.铜基丝线材制备和组织性能研究进展[J].中国有色金属学报, 2020, 30(12):2845-2874. SONG K X, ZHOU Y J, MI X J, et al.Preparation, microstructure and properties of copper based wire[J].The Chinese Journal of Nonferrous Metals, 2020, 30(12):2845-2874.
[3] 代雪琴, 贾淑果, 范俊玲, 等.高强高导铜合金的强化机理与研究热点[J].材料热处理学报, 2021, 42(10):18-26. DAI X Q, JIA S G, FAN J L, et al.Strengthening mechanism and research focus of high strength and high conductivity copper alloy[J].Transactions of Materials and Heat Treatment, 2021, 42(10):18-26.
[4] 文姗, 常丽丽, 尚兴军, 等.铜银合金导线的显微组织与性能[J].中国有色金属学报, 2015, 25(6):1655-1661. WEN S, CHANG L L, SHANG X J, et al.Microstructure and properties of Cu-Ag alloy wire[J].The Chinese Journal of Nonferrous Metals, 2015, 25(6):1655-1661.
[5] 李晓瑜, 陈昭, 刘志林, 等.含银H70铸态黄铜合金组织及性能[J].有色金属科学与工程, 2019, 10(6):55-60. LI X Y, CHEN Z, LIU Z L, et al.Structure and properties of H70 silver-containing cast brass alloy[J].Nonferrous Metals Science and Engineering, 2019, 10(6):55-60.
[6] SAKAI Y, SCHNEIDER-MUNTAU H J.Ultra-high strength, high conductivity Cu-Ag alloy wires[J].Acta Materialia, 1997, 45(3):1017-1023.
[7] ZHU X F, XIAO Z, AN J H, et al.Microstructure and properties of Cu-Ag alloy prepared by continuously directional solidification[J].Journal of Alloys and Compounds, 2021, 883:160769.
[8] 向红亮, 郭培培, 刘东.含Ag抗菌双相不锈钢组织及抗菌性能研究[J].金属学报, 2014, 50(10):1210-1216. XIANG H L, GUO P P, LIU D.Microstructure and antibacterial properties of Ag-bearing duplex stainless steel[J].Acta Metallurgica Sinica, 2014, 50(10):1210-1216.
[9] 陈学情, 蒋家璇, 任志鸿, 等.纳米银的抗菌特性及对多重耐药菌株的抗菌作用[J].微生物学报, 2017, 57(4):539-549. CHEN X Q, JIANG J X, REN Z H, et al.Antibacterial activity of silver nanoparticles against multiple drug resistant strains[J].Acta Microbiologica Sinica, 2017, 57(4):539-549.
[10] 师瑀, 张莹莹, 刘峰, 等.面心立方金属晶界工程技术的研究进展[J].热加工工艺, 2020, 49(16):32-36. SHI Y, ZHANG Y Y, LIU F, et al.Research progress of grain boundary engineering technology for face-centered cubic metals[J].Hot Working Technology, 2020, 49(16):32-36.
[11] 杨钢, 孙利军, 张丽娜, 等.变形孪晶的消失与退火孪晶的形成机制[J].钢铁研究学报, 2009, 21(2):39-43. YANG G, SUN L J, ZHANG L N, et al.Annihilation of deformation twins and formation of annealing twins[J].Journal of Iron and Steel Research, 2009, 21(2):39-43.
[12] LIU Q, HANSEN N. Deformation microstructure and orientation of f.c.c. crystals[J]. Physica Status Solidi, 1995, 149(1):187-199.
[13] 于庆波, 孙莹, 杨根喜, 等.冷变形铝合金再结晶热效应及其机理[J].材料热处理学报, 2013, 34(9):42-46. YU Q B, SUN Y, YANG G X, et al.Thermal effect on recrystallization of cold-deformed aluminium alloy and its mechanisms[J].Transactions of Materials and Heat Treatment, 2013, 34(9):42-46.
[14] ZUO X W, ZHAO C C, ZHANG L, et al.Microstructure and properties of Cu-6wt%Ag composite thermomechanical-processed after directionally solidifying with magnetic field[J].Journal of Alloys and Compounds, 2016, 676:46-53.
[15] LEE D, COHEN R E, RUBNER M F.Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles[J].Langmuir:The ACS Journal of Surfaces and Colloids, 2005, 21(21):9651-9659.
[16] ARAÚJO E A, ANDRADE N J, DA SILVA L H M, et al.Antimicrobial effects of silver nanoparticles against bacterial cells adhered to stainless steel surfaces[J].Journal of Food Protection, 2012, 75(4):701-705.
[17] CHEN R S, NI H W, ZHANG H S, et al.A preliminary study on antibacterial mechanisms of silver ions implanted stainless steel[J].Vacuum, 2013, 89:249-253.
计量
- 文章访问数: 6
- HTML全文浏览量: 1
- PDF下载量: 2