Microstructure and Properties of WC-Cr7C3 Composite ReinforcedIron-Based Laser Cladding Layer
-
摘要: 以铬粉、钨粉、石墨粉和铁粉为熔覆层原料,Ni60合金粉为黏结层原料,采用激光熔覆技术在45钢基体表面制备了WC-Cr7C3复合增强铁基熔覆层,研究了不同激光功率(2 500~3 500 W)和扫描速度(2~5 mm·s-1)下熔覆层的宏观形貌,得到最优工艺参数,分析最优工艺下熔覆层的显微组织和性能。结果表明:最优激光熔覆工艺参数为激光功率3 500 W和扫描速度2 mm·s-1;熔覆层中原位自生了网络结构的WC-Cr7C3复合碳化物,由熔覆层表面到内部其组织逐渐由等轴晶和树枝晶向柱状晶和平面晶转变;熔覆层的平均硬度为507.6 HV,较基体提高约63.8%,平均稳定摩擦因数为0.128,仅为基体的1/4,磨损率为4.9×105 cm3·N-1·m-1,仅为基体的1/9,磨损形式为轻微的磨粒磨损和轻微的黏着磨损。
-
关键词:
- WC-Cr7C3复合增强铁基激光熔覆层 /
- 原位反应 /
- 显微组织 /
- 摩擦磨损性能
Abstract: Taking chromium powder, tungsten powder, graphite powder and iron powder as cladding layer raw materials, and Ni60 alloy powder as bonding layer raw material, WC-Cr7C3 composite reinforced iron-based cladding layer was prepared on the surface of 45 steel substrate by laser cladding technique. The macroscopic morphology of the cladding layer under different laser power (2 500-3 500 W) and scanning speed (2-5 mm·s-1) was studied to determine the optimal process parameters, and the microstructure and properties of the cladding layer under the optimal process were analyzed. The results show that the optimal laser cladding process parameters were the laser power of 3 500 W and the scanning speed of 2 mm·s-1. The WC-Cr7C3 composite carbides with network structure were in situ spontaneously generated in the cladding layer. From the surface to the interior of the cladding layer, the microstructure gradually changed from equiaxed and dendrite to columnar and plane crystal. The average hardness of the cladding layer was 507.6 HV, which was about 63.8% higher than that of the matrix. The average stable friction coefficient was 0.128, which was only one forth of the matrix, and the wear rate was 4.9×105 cm3·N-1·m-1, which was only one ninth of the matrix; the wear form was slight abrasive wear and slight adhesive wear. -
-
[1] 柴程, 李新梅, 王松臣, 等.SiC增强Ni35合金激光熔覆层的组织和性能[J].机械工程材料, 2021, 45(9):58-61. CHAI C, LI X M, WANG S C, et al.Microstructure and properties of laser cladding SiC reinforced Ni35 alloy layer[J].Materials for Mechanical Engineering, 2021, 45(9):58-61.
[2] 刘全民.激光熔覆陶瓷增强金属基复合涂层研究现状[J].热喷涂技术, 2014, 6(2):1-5. LIU Q M.Current status of laser cladding ceramic reinforced metal matrix composite coating[J].Thermal Spray Technology, 2014, 6(2):1-5.
[3] 张松, 张春华, 康煜平, 等.钛合金表面激光熔覆原位生成TiC增强复合涂层[J].中国有色金属学报, 2001, 11(6):1026-1030. ZHANG S, ZHANG C H, KANG Y P, et al.Mechanism of in situ formation of TiC particle reinforced Ti-based composite coating induced by laser melting[J].The Chinese Journal of Nonferrous Metals, 2001, 11(6):1026-1030.
[4] ADESINA O S, POPOOLA A P I, PITYANA S L, et al.Microstructural and tribological behavior of in situ synthesized Ti/Co coatings on Ti-6Al-4V alloy using laser surface cladding technique[J].The International Journal of Advanced Manufacturing Technology, 2018, 95(1/2/3/4):1265-1280.
[5] ZHAO X Y, ZHANG P, WANG X J, et al.In-situ formation of textured TiN coatings on biomedical titanium alloy by laser irradiation[J].Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78:143-153.
[6] 吴军, 金杰, 朱冬冬, 等.TiC添加量对高能激光熔覆Inconel718基陶瓷涂层显微组织和摩擦磨损性能的影响[J].表面技术, 2021, 50(9):225-235. WU J, JIN J, ZHU D D, et al.Effect of TiC content on microstructure, friction and wear properties of Inconel718 based ceramic coatings prepared by high energy laser cladding[J].Surface Technology, 2021, 50(9):225-235.
[7] 伍天华, 李文戈.原位自生WC-Cr3C2复相陶瓷增强铁基表面复合材料[J].材料科学与工程学报, 2009, 27(6):924-927. WU T H, LI W G.In-situ WC-Cr3C2 carbide cermets reinforced surface composites on a ferrous matrix[J].Journal of Meterials Science &Engineering, 2009, 27(6):924-927.
[8] 王倩, 刘桂武, 郑开宏, 等.网络互穿型碳化硅陶瓷/铁基复合材料制备及其耐磨性能[J].硅酸盐学报, 2012, 40(4):493-497. WANG Q, LIU G W, ZHENG K H, et al.Preparation and wear resistance of SiC/Fe composites with interpenetrating structure[J].Journal of the Chinese Ceramic Society, 2012, 40(4):493-497.
[9] 茅美红, 吴钢, 吴钱林, 等.原位合成Cr7C3激光熔覆陶瓷涂层的显微组织及腐蚀性能[J].腐蚀与防护, 2012, 33(6):466-469. MAO M H, WU G, WU Q L, et al.Microstructure and corrosion behavior of in situ synthesized Cr7C3 ceramic coating prepared by laser cladding[J].Corrosion & Protection, 2012, 33(6):466-469.
[10] 钟文华, 刘贵仲, 高原, 等.WC对Ni-Cr3C2激光熔覆层组织与性能的影响[J].热加工工艺, 2012, 41(10):153-156. ZHONG W H, LIU G Z, GAO Y, et al.Effect of WC on microstructure and propertise of Ni-Cr3C2 cladding layer[J].Hot Working Technology, 2012, 41(10):153-156.
[11] 张津超, 石世宏, 龚燕琪, 等.激光熔覆技术研究进展[J].表面技术, 2020, 49(10):1-11. ZHANG J C, SHI S H, GONG Y Q, et al.Research progress of laser cladding technology[J].Surface Technology, 2020, 49(10):1-11.
[12] 翁飞. 钛合金表面陶瓷强化金属基复合激光熔覆层的微观组织与耐磨性能研究[D].山东大学, 2017. WENG F. Microstructure and wear resistance of ceramic reinforced metal matrix composite laser cladding layer on titanium alloy surface[D]. Shandong University, 2017.
[13] 聂学武, 周建忠, 徐家乐, 等.超声振幅对激光熔覆WC/IN718复合涂层组织及性能的影响[J].表面技术, 2020, 49(9):206-214. NIE X W, ZHOU J Z, XU J L, et al.Effect of ultrasound amplitude on microstructure and properties of laser cladding WC/IN718 composite coatings[J].Surface Technology, 2020, 49(9):206-214.
[14] 林冉, 舒林森, 董月, 等.激光功率和扫描速度对熔覆组织与性能的影响[J].激光与光电子学进展, 2021, 58(19):1914004. LIN R, SHU L S, DONG Y, et al.Effect of laser power and scanning speed on microstructure and properties of cladding[J].Laser & Optoelectronics Progress, 2021, 58(19):1914004.
[15] 胡肇炜, 李文戈.激光熔覆原位合成Mo2NiB2涂层工艺研究[J].表面技术, 2017, 46(8):1-6. HU Z W, LI W G.Process research of in situ synthesis of Mo2NiB2 coating by laser cladding[J].Surface Technology, 2017, 46(8):1-6.
[16] 黄凤晓, 江中浩, 刘喜明.激光熔覆工艺参数对横向搭接熔覆层结合界面组织的影响[J].光学精密工程, 2011, 19(2):316-322. HUANG F X, JIANG Z H, LIU X M.Effects of parameters on microstructure of bonding interface formed by overlapping laser cladding[J].Optics and Precision Engineering, 2011, 19(2):316-322.
[17] ZHAO Y T, WANG L B, SUN Y L, et al.Influences of Al and Ti particles on microstructure, internal stress and property of Ni composite coatings[J].Journal of Alloys and Compounds, 2019, 793:314-325.
[18] 王勇刚, 刘和剑, 回丽, 等.激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J].材料工程, 2019, 47(5):72-78. WANG Y G, LIU H J, HUI L, et al. High temperature tribological properties of laser cladding in-situ carbide reinforced self-lubricating wear resistant composite coating[J].Journal of Materials Engineering, 2019, 47(5):72-78.
[19] 白峭峰, 欧阳昌耀, 赵春江, 等.激光熔覆Fe基合金涂层不同熔覆区域组织与耐磨性能[J].热加工工艺, 2022, 51(8):94-97. BAI Q F, OUYANG C Y, ZHAO C J, et al.Microstructure and wear resistance of laser cladding Fe-based alloy coatings in different cladding areas[J].Hot Working Technology, 2022, 51(8):94-97. 欢迎来稿欢迎订阅欢迎刊登广告
计量
- 文章访问数: 4
- HTML全文浏览量: 0
- PDF下载量: 2