• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

双峰结构纳米晶铜的力学行为

张烽, 汤巧云, 蔡淇星, 支有冉, 马银忠

张烽, 汤巧云, 蔡淇星, 支有冉, 马银忠. 双峰结构纳米晶铜的力学行为[J]. 机械工程材料, 2022, 46(11): 78-85. DOI: 10.11973/jxgccl202211013
引用本文: 张烽, 汤巧云, 蔡淇星, 支有冉, 马银忠. 双峰结构纳米晶铜的力学行为[J]. 机械工程材料, 2022, 46(11): 78-85. DOI: 10.11973/jxgccl202211013
ZHANG Feng, TANG Qiaoyun, CAI Qixing, ZHI Youran, MA Yinzhong. Mechanical Behavior of Nanocrystalline Copper with Bimodal Structure[J]. Materials and Mechanical Engineering, 2022, 46(11): 78-85. DOI: 10.11973/jxgccl202211013
Citation: ZHANG Feng, TANG Qiaoyun, CAI Qixing, ZHI Youran, MA Yinzhong. Mechanical Behavior of Nanocrystalline Copper with Bimodal Structure[J]. Materials and Mechanical Engineering, 2022, 46(11): 78-85. DOI: 10.11973/jxgccl202211013

双峰结构纳米晶铜的力学行为

基金项目: 

国家自然科学基金资助项目(51505212)

江苏省青年自然科学基金资助项目(BK20201031)

南京工程学院引进人才科研启动基金资助项目(YKJ201952)

详细信息
    作者简介:

    张烽(1991-),男,江苏靖江人,讲师,博士

    通讯作者:

    支有冉

  • 中图分类号: TG113.2

Mechanical Behavior of Nanocrystalline Copper with Bimodal Structure

  • 摘要: 通过分子动力学模拟、黏塑性本构模型和纳米压痕试验验证相结合的研究方法,系统研究了双峰结构(晶粒尺寸服从统计学中双峰分布)纳米晶铜的变形机理与力学性能。结果表明:在塑性变形过程中位错首先在纳米晶铜的细晶区形核和扩展,且方向互相平行;而粗晶区的位错滑移方向相互交叉,且粗晶尺寸越大,越容易发生位错缠绕和交滑移。双峰结构纳米晶铜的流变应力随着粗晶尺寸的增大而增大,硬度随着粗晶体积分数的增大而减小。由黏塑性本构方程计算得到的应力变化规律与由经验公式和分子动力学模拟得到的结果一致,且本构方程计算得到的流变应力和经验公式所得结果的相对误差小于5%。
    Abstract: The deformation mechanism and mechanical properties of nanocrystalline copper with a bimodal structure (grain size obeying bimodal distribution in statistics) were systematically investigated by combination of molecular dynamics simulation, visco-plastic constitutive model and nanoindentation test verification. The results show that during the plastic deformation, dislocations were first nucleated and expanded in the fine grain zone of the nanocrystalline copper, and the directions were parallel to each other; while the dislocation slip directions in the coarse grain zone crossed each other, and the larger the size of coarse grains, the more likely dislocation entanglement and cross-slip occurred. The flow stresses of the nanocrystalline copper with a bimodal structure increased with increasing coarse grain size, and the hardness decreased with increasing volume fraction of coarse grains. The stress variation law calculated by the visco-plastic constitutive equation was consistent with that by the empirical formula and molecular dynamics simulation, and the relative error between the flow stresses calculated by the constitutive equation and the empirical formula was less than 5%.
  • [1]

    ARIFUZZAMAN M,HOSSEN M B,HARUN-OR-RASHID M,et al.Structural and magnetic properties of nanocrystalline Ni0.7-xCuxCd0.3Fe2O4 prepared through sol-gel method[J].Materials Characterization,2021,171:110810.

    [2]

    LI J J,LU B B,ZHOU H J,et al.Molecular dynamics simulation of mechanical properties of nanocrystalline platinum:Grain-size and temperature effects[J].Physics Letters A,2019,383(16):1922-1928.

    [3]

    XIA Q J,REN P W,MENG H M.High performance of amorphous nanocrystalline composite structure materials[J].Journal of Materials Research and Technology,2022,18:4479-4485.

    [4]

    KUMAR D D,KUMAR N,KALAISELVAM S,et al.Micro-tribo-mechanical properties of nanocrystalline TiN thin films for small scale device applications[J].Tribology International,2015,88:25-30.

    [5]

    LI L,JIAO H Z,LIU C F,et al.Microstructures,mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al,Mn,Cu,Ag and Li elements[J].Journal of Materials Science & Technology,2022,103:244-260.

    [6]

    ZHOU Y Z,WU P,YANG Y W,et al.The microstructure,mechanical properties and degradation behavior of laser-melted MgSn alloys[J].Journal of Alloys and Compounds,2016,687:109-114.

    [7]

    LI J C,WANG K G.Effect of phase coarsening on the mechanical properties of alloys:I.Numerical simulations[J].Engineering Fracture Mechanics,2018,201:229-245.

    [8]

    MAGEE A,LADANI L,TOPPING T D,et al.Effects of tensile test parameters on the mechanical properties of a bimodal Al-Mg alloy[J].Acta Materialia,2012,60(16):5838-5849.

    [9]

    NEFEDOVA E,ALEKSANDROVA E,GRIGORYEV E,et al.Research high-temperature consolidation of nanostructured bimodal materials[J].Physics Procedia,2015,72:390-393.

    [10]

    MI P B,WANG T,YE F X.Influences of the compositions and mechanical properties of HVOF sprayed bimodal WC-Co coating on its high temperature wear performance[J].International Journal of Refractory Metals and Hard Materials,2017,69:158-163.

    [11]

    ZHENG Z J,LIU J W,GAO Y.Achieving high strength and high ductility in 304 stainless steel through bi-modal microstructure prepared by post-ECAP annealing[J].Materials Science and Engineering:A,2017,680:426-432.

    [12]

    SUN S J,TIAN Y Z,LIN H R,et al.Achieving high ductility in the 1.7 GPa grade CoCrFeMnNi high-entropy alloy at 77 K[J].Materials Science and Engineering:A,2019,740/741:336-341.

    [13]

    GUO X,JI R,WENG G J,et al.Micromechanical simulation of fracture behavior of bimodal nanostructured metals[J].Materials Science and Engineering:A,2014,618:479-489.

    [14]

    WEI Y J,GAO H J.An elastic-viscoplastic model of deformation in nanocrystalline metals based on coupled mechanisms in grain boundaries and grain interiors[J].Materials Science and Engineering:A,2008,478(1/2):16-25.

    [15]

    PLIMPTON S.Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117(1):1-19.

    [16]

    MISHIN Y,FARKAS D,MEHL M J,et al.Interatomic potentials for monoatomic metals from experimental data and ab initio calculations[J].Physical Review B,1999,59(5):3393-3407.

    [17]

    STUKOWSKI A.Visualization and analysis of atomistic simulation data with OVITO: The open visualization tool[J].Modelling and Simulation in Materials Science and Engineering,2010,18(1):015012.

    [18]

    COBLE R L.A model for boundary diffusion controlled creep in polycrystalline materials[J].Journal of Applied Physics,1963,34(6):1679-1682.

    [19]

    CONRAD H,NARAYAN J.On the grain size softening in nanocrystalline materials[J].Scripta Materialia,2000,42(11):1025-1030.

    [20]

    WEI J N,ZHAO L,HUANG T C,et al.Grain boundary internal friction peak in polycrystalline pure aluminum studied by continuous temperature changing method[J].Materials for Mechanical Engineering,2009,33(10):17-19.

    [21]

    HERRING C.Diffusional viscosity of a polycrystalline solid[J].Journal of Applied Physics,1950,21(5):437-445.

    [22]

    KNORR P,JUN J,LOJKOWSKI W,et al.Pressure dependence of self- and solute diffusion in bcc zirconium[J].Physical Review B,1998,57(1):334-340.

    [23]

    WERNER M,MEHRER H,HOCHHEIMER H D.Effect of hydrostatic pressure,temperature,and doping on self-diffusion in germanium[J].Physical Review B,1985,32(6):3930-3937.

    [24]

    JANG J W,KWON J,LEE B J.Effect of stress on self-diffusion in bcc Fe:An atomistic simulation study[J].Scripta Materialia,2010,63(1):39-42.

    [25]

    JÉRUSALEM A,RADOVITZKY R.A continuum model of nanocrystalline metals under shock loading[J].Modelling and Simulation in Materials Science and Engineering,2009,17(2):025001.

    [26]

    ASARO R J,SURESH S.Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins[J].Acta Materialia,2005,53(12):3369-3382.

    [27]

    FAN G J,CHOO H,LIAW P K,et al.A model for the inverse Hall-Petch relation of nanocrystalline materials[J].Materials Science and Engineering:A,2005,409(1/2):243-248.

    [28]

    ZHANG T,ZHOU K,CHEN Z Q.Strain rate effect on plastic deformation of nanocrystalline copper investigated by molecular dynamics[J].Materials Science and Engineering:A,2015,648:23-30.

    [29]

    OLIVER W C,PHARR G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research,1992, 7(6): 1564-1583.

计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 修回日期:  2022-07-25
  • 刊出日期:  2022-11-19

目录

    /

    返回文章
    返回