高级检索
    刘紫莉, 高丽, 廖华玉, 胡少辉. Ni-Mn-In基磁制冷合金的研究进展[J]. 机械工程材料, 2023, 47(5): 1-7. DOI: 10.11973/jxgccl202305001
    引用本文: 刘紫莉, 高丽, 廖华玉, 胡少辉. Ni-Mn-In基磁制冷合金的研究进展[J]. 机械工程材料, 2023, 47(5): 1-7. DOI: 10.11973/jxgccl202305001
    LIU Zili, GAO Li, LIAO Huayu, HU Shaohui. Research Progress on Ni-Mn-In Based Magnetic Refrigeration Alloys[J]. Materials and Mechanical Engineering, 2023, 47(5): 1-7. DOI: 10.11973/jxgccl202305001
    Citation: LIU Zili, GAO Li, LIAO Huayu, HU Shaohui. Research Progress on Ni-Mn-In Based Magnetic Refrigeration Alloys[J]. Materials and Mechanical Engineering, 2023, 47(5): 1-7. DOI: 10.11973/jxgccl202305001

    Ni-Mn-In基磁制冷合金的研究进展

    Research Progress on Ni-Mn-In Based Magnetic Refrigeration Alloys

    • 摘要: 基于磁热效应的新型固体磁制冷技术因具有节能高效、稳定可靠的优点而备受关注,该技术利用磁性材料在磁相变过程中与外界环境之间的热交换作用而产生制冷效果。Ni-Mn-In基磁制冷合金在磁场诱导下可以产生逆磁热效应,具有较大的磁熵变。介绍了Ni-Mn-In基磁制冷合金的晶体结构和相变行为,重点综述了晶粒尺寸、化学成分、热处理工艺等因素对Ni-Mn-In基磁制冷合金磁热效应的影响,以及通过微合金化提高合金力学性能的研究进展。对未来该系列合金的研究方向进行了展望。

       

      Abstract: New solid-state magnetic refrigeration technology based on magnetocaloric effects has attracted much attention due to its advantages of energy saving, high efficiency, and stability and reliability. This technology utilizes heat exchange between magnetic materials and external environments during magnetic phase transition to produce refrigeration effects. Ni-Mn-In based magnetic refrigeration alloys can produce an inverse magnetocaloric effect under a magnetic field and have a large magnetic entropy change. The crystal structure and phase transformation behavior of Ni-Mn-In based magnetic refrigeration alloys are described. Research progress on the influence of grain size, chemical composition and heat treatment process on the magnetocaloric effect of Ni-Mn-In based magnetic refrigeration alloys, as well as on improving mechanical properties of the alloys by microalloying is emphatically reviewed. The future research direction of this series of alloys is also prospected.

       

    /

    返回文章
    返回