Preparation of Triazole Fluoroaromatic Hydrocarbon Modified Nano ZnO and Application in Antifouling Coating
-
摘要: 以Cu+催化叠氮炔环偶极加成点击化学反应,在不同催化剂(CuBr/五甲基二乙烯三胺或CuSO4·5H2O/抗坏血酸钠)和反应温度(55,65,75 ℃)下制备三唑环基含氟芳香烃改性纳米氧化锌(ZnO-sTRF),研究了不同ZnO-sTRF的化学结构和元素组成;将表面接枝量最高的ZnO-sTRF与聚氨酯(PU)复合制备ZnO-sTRF/PU涂层,研究了该涂层的疏水性能、抗菌性能以及防污性能。结果表明:当催化剂为CuSO4·5H2O/抗坏血酸钠,反应温度为75 ℃时,改性纳米ZnO表面接枝量最高,制备的ZnO-sTRF/PU涂层表面水接触角可达105.4°,表面大肠杆菌、金黄色葡萄球菌和假交替单胞菌的死菌面积覆盖率是ZnO/PU涂层和3-氨丙基三乙氧基硅烷改性ZnO/PU涂层的10倍以上;在实际海洋环境中浸没120 d后,涂层表面无明显硬质生物的附着。Abstract: Nano zinc oxide modified by triazole ring fluorinated aromatic hydrocarbon (ZnO-sTRF) was prepared by Cu+ catalyzed azidoyne ring dipole addition click chemistry reaction under different catalysts (CuBr/PMDATA or CuSO4·5H2O/sodium ascorbate) and reaction temperatures (55,65,75 ℃). The chemical structure and element composition of ZnO-sTRF were studied. ZnO-sTRF with the highest surface grafting amount was added in polyurethane (PU) to prepare ZnO-sTRF/PU coating. The hydrophobic, antibacterial and antifouling properties of the coating were studied. The results show that with CuSO4·5H2O/sodium ascorbate as catalyst at 75 ℃ , the surface grafting amount of modified nano-ZnO was the highest. The water contact angle of ZnO-sTRF/PU coating surface could reach 105.4°. The area coverage of dead bacteria of surface against escherichia coli, staphylococcus aureus and pseudoaltermonas were more than 10 times that of ZnO/PU and 3-aminopropyltriethoxysilane modified ZnO/PU coatings. After immersion in the actual marine environment for 120 d, the surface of the coating had no obvious adhesion of hard organisms.
-
Keywords:
- nano ZnO /
- triazole ring /
- fluorinated aromatic hydrocarbon /
- antifouling property
-
-
[1] YAN H,WU Q S,YU C M,et al.Recent progress of biomimetic antifouling surfaces in marine[J].Advanced Materials Interfaces,2020,7(20):2000966.
[2] AZEVEDO J,ANTUNES J T,MACHADO A M,et al.Monitoring of biofouling communities in a Portuguese port using a combined morphological and metabarcoding approach[J].Scientific Reports,2020,10:13461.
[3] SELIM M S,EL-SAFTY S A,SHENASHEN M A,et al.Progress in biomimetic leverages for marine antifouling using nanocomposite coatings[J].Journal of Materials Chemistry.B,2020,8(17):3701-3732.
[4] ZHANG R,ZHANG L Z,TIAN N,et al.The tethered fibrillar hydrogels brushes for underwater antifouling[J].Advanced Materials Interfaces,2017,4(7):1601039.
[5] BANERJEE I,PANGULE R C,KANE R S.Antifouling coatings:Recent developments in the design of surfaces that prevent fouling by proteins,bacteria,and marine organisms[J].Advanced Materials (Deerfield Beach,Fla.),2011,23(6):690-718.
[6] JUDZEWITSCH P R,NGUYEN T K,SHANMUGAM S,et al.Towards sequence-controlled antimicrobial polymers:Effect of polymer block order on antimicrobial activity[J].Angewandte Chemie,2018,57(17):4559-4564.
[7] LEE G,SONG J,HAN H,et al.Zwitterion-coated colloidal magnetic nanoparticle clusters for reduced nonspecific adsorption of biomolecules[J].Bioconjugate Chemistry,2021,32(6):1052-1057.
[8] RYU J Y,SONG I T,LAU K H,et al.New antifouling platform characterized by single-molecule imaging[J].ACS Applied Materials & Interfaces,2014,6(5):3553-3558.
[9] LI C Q,XIE C,OU J F,et al.ZnO superhydrophobic coating via convenient spraying and its biofouling resistance[J].Surface and Interface Analysis,2018,50(12/13):1278-1285.
[10] ROSENBERG M,VISNAPUU M,VIJA H,et al.Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces[J].Scientific Reports,2020,10:13478.
[11] SIRELKHATIM A,MAHMUD S,SEENI A,et al.Review on zinc oxide nanoparticles:Antibacterial activity and toxicity mechanism[J].Nano-Micro Letters,2015,7(3):219-242.
[12] PATI R,MEHTA R K,MOHANTY S,et al.Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages[J].Nanomedicine:Nanotechnology,Biology,and Medicine,2014,10(6):1195-1208.
[13] JASIM N A,AL-GASHAA F A,AL-MARJANI M F,et al.ZnO nanoparticles inhibit growth and biofilm formation of vancomycin-resistant S.aureus (VRSA)[J].Biocatalysis and Agricultural Biotechnology,2020,29:101745.
[14] LEE L J,BARRETT J A,POOLE R K.Genome-wide transcriptional response of chemostat-cultured escherichia coli to zinc[J].Journal of Bacteriology,2005,187(3):1124-1134.
[15] DUTTA R K,NENAVATHU B P,GANGISHETTY M K,et al.Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation[J].Colloids and Surfaces.B,Biointerfaces,2012,94:143-150.
[16] ODDS F C,BROWN A J P,GOW N A R.Antifungal agents:Mechanisms of action[J].Trends in Microbiology,2003,11(6):272-279.
[17] JONES L H.Recent advances in the molecular design of synthetic vaccines[J].Nature Chemistry,2015,7(12):952-960.
[18] SHAPIRO S.Speculative strategies for new antibacterials:All roads should not lead to Rome[J].The Journal of Antibiotics,2013,66(7):371-386.
[19] SANTOSH R,SELVAM M K,KANEKAR S U,et al.Synthesis,characterization,antibacterial and antioxidant studies of some heterocyclic compounds from triazole-linked chalcone derivatives[J].Chemistry Select,2018,3(23):6338-6343.
[20] BRITTON R,GOUVERNEUR V,LIN J H,et al.Contemporary synthetic strategies in organofluorine chemistry[J].Nature Reviews Methods Primers,2021,1:47.
[21] 张发光,彭星,马军安.三氟甲基三氮唑及四氮唑化合物的合成研究进展[J].有机化学,2019,39(1):109-116. ZHANG F G,PENG X,MA J A.Recent advances in the synthesis of CF3-substituted triazoles and tetrazoles[J].Chinese Journal of Organic Chemistry,2019,39(1):109-116.
[22] HASHIDZUME A,NAKAMURA T,SATO T.Copper-catalyzed azide-alkyne cycloaddition oligomerization of 3-azido-1-propyne derivatives[J].Polymer,2013,54(14):3448-3451.
[23] HU G S,CHEN J J,FAN Y,et al.A promoted copper-catalysed azide-alkyne cycloaddition (CuAAC) for broad spectrum peptide-engineered implants[J].Chemical Engineering Journal,2022,427:130918.
[24] MELDAL M,DINESS F.Recent fascinating aspects of the CuAAC click reaction[J].Trends in Chemistry,2020,2(6):569-584.
[25] VENDERBOSCH B,OUDSEN J P H,VAN DER VLUGT J I,et al.Cationic copper iminophosphorane complexes as CuAAC catalysts:A mechanistic study[J].Organometallics,2020,39(19):3480-3489.
[26] ALI A A, CHETIA M, SARMA D. Urea assisted copper(I)-catalyzed azide-alkyne cycloaddition reactions in water[J]. Tetrahedron Letters, 2016, 57 (15):1711-1714.
[27] FERNANDES R A,GANGANI A J,KUNKALKAR R A.Metal-free annulative hydrosulfonation of propiolate esters:Synthesis of 4-sulfonates of coumarins and butenolides[J].New Journal of Chemistry,2020,44(10):3970-3984.
[28] AGALAVE S G,MAUJAN S R,PORE V S.Click chemistry:1,2,3-triazoles as pharmacophores[J].Chemistry,an Asian Journal,2011,6(10):2696-2718.
[29] ZHANG X J,HSUNG R P,LI H Y.A triazole-templated ring-closing metathesis for constructing novel fused and bridged triazoles[J].Chemical Communications (Cambridge,England),2007(23):2420-2422.
[30] DEEPAK V D,MAHMUD I,GAUTHIER M.Synthesis of carboxylated derivatives of poly(isobutylene-co-isoprene) by azide-alkyne "click" chemistry[J].Polymer Journal,2019,51(3):327-335.
[31] MANNAVA M K C,BOMMAKA M K,DANDELA R,et al.Fluorobenzoic acid coformers to improve the solubility and permeability of the BCS class IV drug naftopidil[J].Chemical Communications (Cambridge,England),2022,58(37):5582-5585.
[32] BÖHM H J,BANNER D,BENDELS S,et al.Fluorine in medicinal chemistry[J].Chembiochem:A European Journal of Chemical Biology,2004,5(5):637-643.
[33] MAGNI P A,TINGEY E,ARMSTRONG N J,et al.Evaluation of barnacle (Crustacea:Cirripedia) colonisation on different fabrics to support the estimation of the time spent in water by human remains[J].Forensic Science International,2021,318:110526.
[34] GUO S F,KHOO B C,TEO S L M,et al.Effect of ultrasound on cyprid footprint and juvenile barnacle adhesion on a fouling release material[J].Colloids and Surfaces.B,Biointerfaces,2014,115:118-124.
[35] ALEEM QURESHI D,GOFFREDO S,KIM Y,et al.Why mussel byssal plaques are tiny yet strong in attachment[J].Matter,2022,5(2):710-724.
计量
- 文章访问数: 3
- HTML全文浏览量: 0
- PDF下载量: 3