• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

晶粒尺寸对IF钢低周疲劳行为及疲劳后显微组织的影响

魏晨羲, 李凯, 杨蔚涛, 祝向荣, 杨旗

魏晨羲, 李凯, 杨蔚涛, 祝向荣, 杨旗. 晶粒尺寸对IF钢低周疲劳行为及疲劳后显微组织的影响[J]. 机械工程材料, 2023, 47(8): 23-28. DOI: 10.11973/jxgccl202308004
引用本文: 魏晨羲, 李凯, 杨蔚涛, 祝向荣, 杨旗. 晶粒尺寸对IF钢低周疲劳行为及疲劳后显微组织的影响[J]. 机械工程材料, 2023, 47(8): 23-28. DOI: 10.11973/jxgccl202308004
WEI Chenxi, LI Kai, YANG Weitao, ZHU Xiangrong, YANG Qi. Effect of Grain Size on Low Cycle Fatigue Behavior and Microstructure after Fatigue of IF Steel[J]. Materials and Mechanical Engineering, 2023, 47(8): 23-28. DOI: 10.11973/jxgccl202308004
Citation: WEI Chenxi, LI Kai, YANG Weitao, ZHU Xiangrong, YANG Qi. Effect of Grain Size on Low Cycle Fatigue Behavior and Microstructure after Fatigue of IF Steel[J]. Materials and Mechanical Engineering, 2023, 47(8): 23-28. DOI: 10.11973/jxgccl202308004

晶粒尺寸对IF钢低周疲劳行为及疲劳后显微组织的影响

基金项目: 

上海市中央引导地方科技发展资金资助项目(YDZX20213100003222)

详细信息
    作者简介:

    魏晨羲(1996-),男,安徽亳州人,硕士研究生 导师:杨旗正高级工程师

  • 中图分类号: TG142.1

Effect of Grain Size on Low Cycle Fatigue Behavior and Microstructure after Fatigue of IF Steel

  • 摘要: 通过850,950 ℃退火制备得到平均晶粒尺寸分别为40,210 μm的IF钢,研究了晶粒尺寸对其低周疲劳行为和疲劳后显微组织的影响。结果表明:在疲劳循环过程中,细晶试验钢的初始平均峰值应力高于粗晶试验钢,随着循环次数增加,2种试验钢的平均峰值应力趋于相近;细晶试验钢始终表现为循环加工硬化,粗晶试验钢表现为初始循环硬化、循环饱和和二次循环硬化。经400周次疲劳循环后,细晶试验钢的显微组织由尺寸相近且分布均匀的位错胞组成,粗晶试验钢的显微组织主要由宏观驻留滑移带(Macro-PSB)和位错胞组成,Macro-PSB中包含较为细小的位错胞;粗晶试验钢具有较高的位错密度及相对显著的组织不均匀性。
    Abstract: IF steels with average grain size of 40 μm and 210 μm were prepared by annealing at 850 ℃ and 950 ℃, respectively. The effects of the grain size on the low-cycle fatigue behavior and the microstructure after fatigue were investigated. The results show that during fatigue cycle, the initial average peak stress of the fine-grained test steel was higher than that of the coarse-grained test steel. The average peak stress of the two test steels tended to be equal with increasing number of cycles. The fine-grained test steel always showed cyclic work hardening during fatigue, while the coarse-grained test steel showed initial cycle hardening, cycle saturation and secondary cycle hardening. After 400 fatigue cycles, the microstructure of the fine-grained test steel was composed of similarly sized and uniformly distributed dislocation cells, while the microstructure of the coarse-grained test steel was mainly composed of macro-persistent slip band (Macro-PSB) and dislocation cells. The Macro-PSB contained relatively small dislocation cells. The coarse-grained test steel had higher dislocation density and relatively significant structural heterogeneity.
  • [1] 宋凤明,温东辉,李自刚,等.低屈服点钢的发展及应用[J].热加工工艺,2008,37(6):85-88.

    SONG F M,WEN D H,LI Z G,et al.Application and development of low yield point steel[J].Hot Working Technology,2008,37(6):85-88.

    [2]

    SAEKI E,SUGISAWA M,YAMAGUCHI T,et al.Mechanical properties of low yield point steels[J].Journal of Materials in Civil Engineering,1998,10(3):143-152.

    [3]

    THOMPSON A W,BACKOFEN W A.The effect of grain size on fatigue[J].Acta Metallurgica,1971,19(7):597-606.

    [4]

    HANLON T,KWON Y N,SURESH S.Grain size effects on the fatigue response of nanocrystalline metals[J].Scripta Materialia,2003,49(7):675-680.

    [5]

    LAWSON L,CHEN E Y,MESHII M.Near-threshold fatigue:A review[J].International Journal of Fatigue,1999,21:15-34.

    [6]

    MUÑOZ J A,HIGUERA O F,CABRERA J M.High cycle fatigue of ARMCO iron severely deformed by ECAP[J].Materials Science and Engineering:A,2017,681:85-96.

    [7]

    KOBAYASHI S,YANG W T,TOMOBE Y,et al.Low-angle boundary engineering for improving high-cycle fatigue property of 430 ferritic stainless steel[J].Journal of Materials Science,2020,55(22):9273-9285.

    [8]

    ROLIM LOPES L C,CHARLIER J.Effect of grain size and intergranular stresses on the cyclic behaviour of a ferritic steel[J].Materials Science and Engineering:A,1993,169(1/2):67-77.

    [9]

    SAWAI T, MATSUOKA S, TSUZAKI K. Low- and high-cycle fatigue properties of ultrafine-grained low carbon steels[J]. Tetsu-to-Hagane, 2003, 89(6): 726-733.

    [10]

    MAGNIN T,RAMADE C,LEPINOUX J,et al.Low-cycle fatigue damage mechanisms of F.c.c. and B.c.c. polycrystals:Homologous behaviour?[J].Materials Science and Engineering:A,1989,118:41-51.

    [11]

    SANGID M D.The physics of fatigue crack initiation[J].International Journal of Fatigue,2013,57:58-72.

    [12]

    STANZL-TSCHEGG S,SCHÖNBAUER B.Near-threshold fatigue crack propagation and internal cracks in steel[J].Procedia Engineering,2010,2(1):1547-1555.

    [13]

    SHIH C C,HO N J,HUANG H L.Dislocation evolution in interstitial-free steel during fatigue near the endurance limit[J].Journal of Materials Science,2010,45(3):818-823.

    [14]

    SHIH C C,HO N J,HUANG H L.The study of fatigue behaviors and dislocation structures in interstitial-free steel[J].Metallurgical and Materials Transactions A,2010,41(8):1995-2001.

    [15]

    SHIH C C,YEH D H,HO N J,et al.The study of crack-propagation behaviors and dislocation structures in cyclically deformed polycrystalline IF steel[J].Materials Science and Engineering:A,2011,528(21):6381-6386.

    [16]

    KUMAGAI M,YOKOYAMA R.Characterization of microstructures by X-ray diffraction line profile analysis[J].Journal of the Society of Materials Science,Japan,2020,69(3):277-283.

    [17]

    TAKEBAYASHI S,KUNIEDA T,YOSHINAGA N,et al.Comparison of the dislocation density in martensitic steels evaluated by some X-ray diffraction methods[J].ISIJ International,2010,50(6):875-882.

    [18]

    MASUMURA T,URANAKA S,MATSUDA K,et al.Analysis of dislocation density by direct-fitting/modified Williamson-Hall (DF/mWH) method in tempered low-carbon martensitic steel[J].Tetsu-to-Hagane,2020,106(11):826-834.

    [19]

    SHINTANI T,MURATA Y.Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction[J].Acta Materialia,2011,59(11):4314-4322.

    [20]

    POLÁK J,DEGALLAIX S,DEGALLAIX G.The role of cyclic slip localization in fatigue damage of materials[J].Le Journal De Physique IV,1993,3:679-684.

    [21]

    JOHNSTON T L,FELTNER C E.Grain size effects in the strain hardening of polycrystals[J].Metallurgical and Materials Transactions B,1970,1(5):1161-1167.

    [22]

    GREULICH F,MURR L E.Effect of grain size,dislocation cell size and deformation twin spacing on the residual strengthening of shock-loaded nickel[J].Materials Science and Engineering,1979,39(1):81-93.

    [23]

    CUDDY J,NABIL BASSIM M.Study of dislocation cell structures from uniaxial deformation of AISI 4340 steel[J].Materials Science and Engineering:A,1989,113:421-429.

    [24]

    DODARAN M,KHONSARI M M,SHAO S.Critical operating stress of persistent slip bands in Cu[J].Computational Materials Science,2019,165:114-120.

    [25]

    KRUML T,POLÁK J.Fatigue softening of X10CrAl24 ferritic steel[J].Materials Science and Engineering:A,2001,319/320/321:564-568.

计量
  • 文章访问数:  8
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 修回日期:  2023-04-26
  • 刊出日期:  2023-08-19

目录

    /

    返回文章
    返回