• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

WC增强铁基合金粉芯热丝等离子弧熔覆层的制备及其组织和性能

凌壮壮, 冯曰海, 夏杰

凌壮壮, 冯曰海, 夏杰. WC增强铁基合金粉芯热丝等离子弧熔覆层的制备及其组织和性能[J]. 机械工程材料, 2023, 47(8): 39-44. DOI: 10.11973/jxgccl202308007
引用本文: 凌壮壮, 冯曰海, 夏杰. WC增强铁基合金粉芯热丝等离子弧熔覆层的制备及其组织和性能[J]. 机械工程材料, 2023, 47(8): 39-44. DOI: 10.11973/jxgccl202308007
LING Zhuangzhuang, FENG Yuehai, XIA Jie. Preparation, Microstructure and Properties of Plasma Arc Cladding Layer with WC Reinforced Iron-Based Alloy Powder-Cored Hot Wire[J]. Materials and Mechanical Engineering, 2023, 47(8): 39-44. DOI: 10.11973/jxgccl202308007
Citation: LING Zhuangzhuang, FENG Yuehai, XIA Jie. Preparation, Microstructure and Properties of Plasma Arc Cladding Layer with WC Reinforced Iron-Based Alloy Powder-Cored Hot Wire[J]. Materials and Mechanical Engineering, 2023, 47(8): 39-44. DOI: 10.11973/jxgccl202308007

WC增强铁基合金粉芯热丝等离子弧熔覆层的制备及其组织和性能

基金项目: 

国防创新特区项目(17-H863)

详细信息
    作者简介:

    凌壮壮(1996-),男,江苏连云港人,硕士研究生导师:冯曰海教授

  • 中图分类号: TG456.2

Preparation, Microstructure and Properties of Plasma Arc Cladding Layer with WC Reinforced Iron-Based Alloy Powder-Cored Hot Wire

  • 摘要: 采用电阻热与等离子弧双热源同步加热WC增强铁基合金粉芯丝材的方法制备WC增强铁基合金熔覆层,研究了不同热丝电流(0,40,50,60,70 A)下熔覆层的宏观形貌、显微组织和性能,获得了合适的热丝电流。结果表明:当热丝电流为50 A时,熔覆层的成形质量较好,稀释率最低,为51.77%;随着热丝电流的增大,熔覆层的平均晶粒尺寸先减小后增大,碳化物含量先增多后减少,当热丝电流为50 A时,组织以细小的奥氏体胞状晶为主,晶粒平均尺寸较小,为9.45 μm,并且碳化物含量最多;随着热丝电流的增加,熔覆层的平均硬度先升高后降低,磨损率和摩擦因数均先减小后增大,当热丝电流为50 A时,平均硬度最高,为403.1 HV,摩擦因数和磨损率均最小,分别为0.52和4.53×10-6 mm3·N-1·m-1
    Abstract: WC reinforced iron-based alloy cladding layer was prepared by heating WC reinforced iron-based alloy powder-cored wire with resistance heat and plasma arc dual heat source simultaneously. The macromorphology, microstructure and properties of cladding layers under different hot wire currents (0,40,50,60,70 A) were studied, and the appropriate hot wire current was obtained. The results show that when the hot wire current was 50 A, the forming quality of the cladding layers was good with the lowest dilution rate of 51.77%. With increasing hot wire current, the average grain size of the cladding layer first decreased and then increased, and the carbide content first increased and then decreased. When the hot wire current was 50 A, the microstructure mainly consisted of fine cellular austenite, the average grain size was small (9.45 μm), and the carbide content was the highest. With increasing hot wire current, the average hardness of the cladding layer first increased and then decreased, and the wear rate and friction coefficient first decreased and then increased. When the hot wire current was 50 A, the cladding layer had the highest average hardness of 403.1 HV, the smallest friction coefficient of 0.52 and the smallest wear rate of 4.53×10-6 mm3·N-1·m-1.
  • [1]

    BEHERA M P,DOUGHERTY T,SINGAMNENI S.Conventional and additive manufacturing with metal matrix composites:A perspective[J].Procedia Manufacturing,2019,30:159-166.

    [2]

    VAN NGUYEN A,TASHIRO S,NGO M H,et al.Effect of the eddies formed inside a weld pool on welding defects during plasma keyhole arc welding[J].Journal of Manufacturing Processes,2020,59:649-657.

    [3] 陈更新,洪峰,王华君,等.钴基碳化钨增强等离子弧堆焊覆层的制备及其磨损行为[J].热加工工艺,2019,48(20):98-101.

    CHEN G X,HONG F,WANG H J,et al.Preparation and wear behavior of WC-Co reinforced plasma arc surfacing coating[J].Hot Working Technology,2019,48(20):98-101.

    [4]

    WEI Y,WEI X S,CHEN B,et al.Parameter optimization for tungsten carbide/Ni-based composite coating deposited by plasma transferred arc hardfacing[J].Transactions of Nonferrous Metals Society of China,2018,28(12):2511-2519.

    [5]

    FERRO ROCHA A M,BASTOS A C,CARDOSO J P,et al.Corrosion behaviour of WC hardmetals with nickel-based binders[J].Corrosion Science,2019,147:384-393.

    [6]

    HE M,WANG J Y,HE R G,et al.Effect of cobalt content on the microstructure and mechanical properties of coarse grained WC-Co cemented carbides fabricated from chemically coated composite powder[J].Journal of Alloys and Compounds,2018,766:556-563.

    [7] 冯曰海,汤荣华,刘思余,等.308L不锈钢热丝等离子弧增材构件组织和性能[J].焊接学报,2021,42(5):77-83.

    FENG Y H,TANG R H,LIU S Y,et al.Microstructures and mechanical properties of stainless steel component deposited with 308L wire by hot wire plasma arc additive manufacturing process[J].Transactions of the China Welding Institution,2021,42(5):77-83.

    [8]

    MIAO Y G,YIN C H,WEI C,et al.An investigation on droplet transfer for bypass-current wire-heating PAW[J].Journal of Manufacturing Processes,2021,65:355-363.

    [9]

    CAO F J,CHEN S J,DU C C.Investigation of hot-wire TIG welding based on the heat-conduction[J].Energy Procedia,2018,144:9-15.

    [10]

    PAI A,SOGALAD I,BASAVARAJAPPA S,et al.Assessment of impact strength of welds produced by cold wire and hot wire gas tungsten arc welding (GTAW) processes[J].Materials Today:Proceedings,2020,24:983-994.

    [11] 李挺,黄健康,陈秀娟,等.旁路耦合微束等离子弧焊熔滴过渡特性分析[J].热加工工艺,2018,47(5):182-185.

    LI T,HUANG J K,CHEN X J,et al.Analysis of droplet transfer characteristics in bypass double-electrode micro-plasma arc welding[J].Hot Working Technology,2018,47(5):182-185.

    [12] 刘海华,赵淘,张志臣,等.横向稳态磁场作用下微束等离子电弧数值分析[J].材料科学与工艺,2021,29(1):59-65.

    LIU H H,ZHAO T,ZHANG Z C,et al.Numerical analysis of micro-plasma arc under the action of transverse steady state magnetic field[J].Materials Science and Technology,2021,29(1):59-65.

    [13] 张孟良,汤文博,李百奇,等.等离子熔覆添加和内生联合WC颗粒增强铁基涂层的组织和性能[J].金属热处理,2022,47(2):200-205.

    ZHANG M L,TANG W B,LI B Q,et al.Microstructure and properties of additional and in situ synthesized WC particle reinforced iron-based coatings prepared by plasma cladding[J].Heat Treatment of Metals,2022,47(2):200-205.

    [14] 张洋,宋博瀚,薛峰.稀释率对镍基合金激光熔覆层组织和性能的影响[J].应用激光,2016,36(3):259-264.

    ZHANG Y,SONG B H,XUE F.Influence of dilution on microstructure and properties in Ni based laser clad coating[J].Applied Laser,2016,36(3):259-264.

    [15] 王暑光,石拓,傅戈雁,等.激光内送粉高速熔覆Cr50Ni合金稀释率及单道形貌分析[J].表面技术,2020,49(7):311-318.

    WANG S G,SHI T,FU G Y,et al.Analysis of dilution rate and single channel morphology of high-speed cladding Cr50Ni alloy by laser inside-beam powder feeding process[J].Surface Technology,2020,49(7):311-318.

计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-08
  • 修回日期:  2023-05-26
  • 刊出日期:  2023-08-19

目录

    /

    返回文章
    返回