Process Optimization of Y2O3 Coating Prepared by Atmospheric Plasma Spraying Based on Response Surface Methodology
-
摘要: 以自制的高纯Y2O3粉为原料,借助大气等离子喷涂工艺在A6061铝合金表面制备Y2O3涂层,基于响应曲面法构筑了相应的响应曲面图,分析了喷涂电压(60~80 V)、喷涂电流(500~600 A)和喷涂距离(100~120 mm)的交互作用对涂层硬度和孔隙率的影响,优化了等离子喷涂工艺。结果表明:基于响应曲面法建立了涂层显微硬度和孔隙率的二次数学模型;模型预测Y2O3涂层的优化工艺参数为喷涂电压78 V、喷涂电流500 A、喷涂距离120 mm,涂层的显微硬度和孔隙率分别为633.28 HV和3.22%,与试验值的相对误差分别为1.92%和1.26%,验证了模型的准确性。优化工艺下制备的涂层表面粗糙度为5.733 μm,结合强度为25.6 MPa。Abstract: With self-made high-purity Y2O3 powder as raw material, Y2O3 coating was prepared on the surface of A6061 aluminum alloy substrate by atmospheric plasma spraying. Based on the response surface methodology, the corresponding response surface maps were constructed, and the influence of the interaction of spraying voltage (60-80 V), spraying current (500-600 A) and spraying distance (100-120 mm) on the microhardness and porosity of the coating was analyzed. The plasma spraying process was optimized. The results show that a quadratic mathematical model of the microhardness and porosity of coating was established by response surface methodology. The optimal process parameters of the Y2O3 coating predicted by the model were listed as follows: spraying voltage of 78 V, spraying current of 500 A and spraying distance of 120 mm. The corresponding microhardness and porosity were 633.28 HV and 3.22%, and the relative errors of the predicted value and the test value were 1.92% and 1.26%, respectively, verifying the accuracy of the model. Under the optimal process, the surface roughness of the prepared coating was 5.733 μm, and the bonding strength was 25.6 MPa.
-
Keywords:
- atmospheric plasma spraying /
- Y2O3 coating /
- response surface methodology /
- microhardness /
- porosity
-
-
[1] ORJI N G, OBENG Y S, BEITIA C, et al. International roadmap for devices and systems 2017 edition executive summary[M]. New Jersey: Wiley IEEE Press, 2018.
[2] VAN ROOSMALEN A J,BAGGERMAN J A G,BRADER S J H.Dry etching for VLSI[M].New York:Plenum Press,1991.
[3] DOERING R,NISHI Y.Handbook of semiconductor manufacturing technology[M].2nd ed.Boca Raton:CRC Press,2008.
[4] CHOI J H,LEE S M,NAHM S,et al.Effect of Y2O3 content on the microstructural characteristics and the mechanical and thermal properties of Yb-doped SiAlON ceramics[J].Ceramics International,2022,48(9):12161-12169.
[5] TAN Y C,WANG Y,WU S H,et al.Sputtering resistance and damage mechanism of Y2O3-based ceramics etching by Xe plasma[J].Materials Today Communications,2021,26:101775.
[6] MAY G S,SPANOS C J.Fundamentals of semiconductor manufacturing and process control[M].Piscataway,NJ:IEEE,2006.
[7] KATO N,MIZUNO H,IBE H,et al.Ceramic coatings prepared by plasma spraying for semiconductor production equipment[C]//International Thermal Spray Conference,Thermal Spray 2006:Proceedings from the International Thermal Spray Conference. Seattle,Washington,USA:ASM International,2006.
[8] KITAMURA J,IBE H,MIZUNO H,et al.Erosion properties of plasma sprayed ceramic coatings against process plasma in semiconductor production equipment[C]//International Thermal Spray Conference,Thermal Spray 2007:Proceedings from the International Thermal Spray Conference.Beijing,China:ASM International,2007.
[9] HOLLIS K,BARTRAM B.Plasma spray formed yttrium oxide crucibles[C]//International Thermal Spray Conference,Thermal Spray 2006:Proceedings from the International Thermal Spray Conference.Seattle,Washington,USA:ASM International,2006.
[10] 李全,刘祖铭,彭凯,等.机械球磨Y2O3粉末的组织结构演变[J].粉末冶金材料科学与工程,2019,24(3):226-231. LI Q,LIU Z M,PENG K,et al.Microstructure evolution of Y2O3 powder during mechanical milling[J].Materials Science and Engineering of Powder Metallurgy,2019,24(3):226-231.
[11] JI X J, REN X J, LI Z D, et al. Preparation of high purity yttrium powders and coatings[C]//Proceedings of the ITSC2009. Lasvegas, USA:[s.n.], 2009.
[12] 罗小晨,王文东,刘邦武,等.氧化钇陶瓷涂层的制备及结构研究[J].热加工工艺,2011,40(20):116-118. LUO X C,WANG W D,LIU B W,et al.Study on preparation and structure of yttrium oxide ceramic coating[J].Hot Working Technology,2011,40(20):116-118.
[13] CTIBOR P,SEDLACEK J,MUSALEK R,et al.Structure and electrical properties of yttrium oxide sprayed by plasma torches from powders and suspensions[J].Ceramics International,2022,48(6):7464-7474.
[14] JANG B K,NAGASHIMA N,KIM S,et al.Mechanical properties and microstructure of Yb2SiO5 environmental barrier coatings under isothermal heat treatment[J].Journal of the European Ceramic Society,2020,40(7):2667-2673.
[15] CHUN S M,PARK S M,YANG G W,et al.Improvement of the flowability of fine yttrium oxide powders by microwave oxygen plasma and evaluation of the dense coating layer[J].Ceramics International,2021,47(12):17476-17486.
[16] 付倩倩,通雁鹏.基于曲面响应法的大气等离子喷涂La2Ce2O7涂层粒子特性与微观结构研究[J].粉末冶金技术,2020,38(5):332-339. FU Q Q,TONG Y P.Study on particle characteristics and microstructure of La2Ce2O7 coating by atmospheric plasma spraying based on the response surface method[J].Powder Metallurgy Technology,2020,38(5):332-339.
[17] 张斌,张向军,林丽,等.超音速等离子喷涂Al2O3涂层的绝缘性能[J].材料保护,2019,52(9):83-87. ZHANG B,ZHANG X J,LIN L,et al.Insulation performance of Al2O3 coating deposited by supersonic plasma spraying[J].Materials Protection,2019,52(9):83-87.
[18] HARIDASAN V P,VELAYUDHAM A,KRISHNAMURTHY R.Response surface modeling and parameter optimization of detonation spraying with enhanced coating performance[J].Materials Today:Proceedings,2021,46:3474-3481.
[19] VENKATARAMANAN A R,SUBRAMANIYAN M,KUMAR S L,et al.Application of CCD in RSM to obtain optimize treatment of tribological characteristics of WC-10Co-4Cr nanoceramic thermal spray coating[J].Materials Today:Proceedings,2021,45:6160-6170.
[20] SINGH S K,CHATTOPADHYAYA S,PRAMANIK A,et al.Effect of alumina oxide nano-powder on the wear behaviour of CrN coating against cylinder liner using response surface methodology:Processing and characterizations[J].Journal of Materials Research and Technology,2022,16:1102-1113.
[21] SHOZIB I A,AHMAD A,RAHAMAN M S A,et al.Modelling and optimization of microhardness of electroless Ni-P-TiO2 composite coating based on machine learning approaches and RSM[J].Journal of Materials Research and Technology,2021,12:1010-1025.
[22] 孙浩,董昕远,任媛,等.大气等离子喷涂工艺参数与粉末成分对NiCrCuB涂层成分、组织结构及性能的影响[J].热喷涂技术,2021,13(1):1-12. SUN H,DONG X Y,REN Y,et al.Influences of spray parameters and powder composition on the coating composition,microstructure and properties during atmospheric plasma spraying of NiCrCuB[J].Thermal Spray Technology,2021,13(1):1-12.
[23] XIAO C.Study on microstructure and property of low pressure plasma sprayed MoB/CoCr gradient coatings by laser remelting[J]. Surface Technology,2012,41(2):23-25.
[24] WANG M Q,ZHOU Z H,WANG Q J,et al.Box-Behnken design to enhance the corrosion resistance of plasma sprayed Fe-based amorphous coating[J].Results in Physics,2019,15:102708.
[25] 张帆,胡勇,梁爱民,等.电压及电流对等离子喷涂Mo涂层微观组织和性能的影响[J].热加工工艺,2020,49(2):84-88. ZHANG F,HU Y,LIANG A M,et al.Influence of current and voltage on microstructure and performance of plasma sprayed Mo coating[J].Hot Working Technology,2020,49(2):84-88.
[26] 唐万源,姚李帆,赵晓兵.喷涂功率和距离对铁基非晶涂层结构和耐磨防腐蚀性能的影响[J].材料保护,2020,53(10):51-56. TANG W Y,YAO L F,ZHAO X B.Effects of spraying power and distance on the microstructure,wear resistance and corrosion resistance of Fe-based amorphous coatings[J].Materials Protection,2020,53(10):51-56.
[27] 刘琛珩.铁基非晶涂层的制备及性能研究[D].兰州:兰州理工大学,2019. LIU C H.Study on preparation and properties of Fe-based amorphous coatings[D].Lanzhou:Lanzhou University of Technology,2019. [28] 靳子昂,刘明,朱丽娜,等.超音速等离子转移弧喷涂铝涂层的响应曲面法工艺优化[J].中国表面工程,2020,33(3):111-118. JIN Z A,LIU M,ZHU L N,et al.Process optimization of supersonic plasma transfer arc spraying aluminum coating by response surface method[J].China Surface Engineering,2020,33(3):111-118.
[29] 刘吉磊.铁基非晶合金涂层等离子喷涂制备工艺及其性能研究[D].南昌:南昌大学,2012. LIU J L.The study on plasma spraying preparation process of iron-based amorphous alloy coating and its properties[D].Nanchang:Nanchang University,2012. [30] BOLELLI G,STEDUTO D,KIILAKOSKI J,et al.Tribological properties of plasma sprayed Cr2O3,Cr2O3-TiO2,Cr2O3-Al2O3 and Cr2O3-ZrO2 coatings[J].Wear,2021,480/481:203931.
计量
- 文章访问数: 12
- HTML全文浏览量: 1
- PDF下载量: 2