高级检索

    高速铣削参数对GH4169镍基高温合金加工表面变质层厚度的影响

    张家瑁, 杜劲, 李银玲, 石海川, 苏国胜, 张培荣

    张家瑁, 杜劲, 李银玲, 石海川, 苏国胜, 张培荣. 高速铣削参数对GH4169镍基高温合金加工表面变质层厚度的影响[J]. 机械工程材料, 2023, 47(10): 31-36,96. DOI: 10.11973/jxgccl202310005
    引用本文: 张家瑁, 杜劲, 李银玲, 石海川, 苏国胜, 张培荣. 高速铣削参数对GH4169镍基高温合金加工表面变质层厚度的影响[J]. 机械工程材料, 2023, 47(10): 31-36,96. DOI: 10.11973/jxgccl202310005
    ZHANG Jiamao, DU Jin, LI Yinling, SHI Haichuan, SU Guosheng, ZHANG Peirong. Effect of High-Speed Milling Parameters on Metamorphic Layer Thickness of GH4169 Nickel-Based Superalloy Machined Surface[J]. Materials and Mechanical Engineering, 2023, 47(10): 31-36,96. DOI: 10.11973/jxgccl202310005
    Citation: ZHANG Jiamao, DU Jin, LI Yinling, SHI Haichuan, SU Guosheng, ZHANG Peirong. Effect of High-Speed Milling Parameters on Metamorphic Layer Thickness of GH4169 Nickel-Based Superalloy Machined Surface[J]. Materials and Mechanical Engineering, 2023, 47(10): 31-36,96. DOI: 10.11973/jxgccl202310005

    高速铣削参数对GH4169镍基高温合金加工表面变质层厚度的影响

    基金项目: 

    国家自然科学基金资助项目(51675289)

    山东省自然科学基金资助项目(ZR2020ME160)

    详细信息
      作者简介:

      张家瑁(1999-),男,山东菏泽人,硕士研究生

      通讯作者:

      杜劲副教授

    • 中图分类号: TG54

    Effect of High-Speed Milling Parameters on Metamorphic Layer Thickness of GH4169 Nickel-Based Superalloy Machined Surface

    • 摘要: 在不同铣削速度(500~1 000 m·min-1)和径向铣削深度(0.1~0.3 mm)下对GH4169镍基高温合金进行高速铣削加工,研究了铣削参数对切削力、切削温度、变质层和白层厚度以及表层硬度的影响。结果表明:随着铣削速度的增大,切削力降低,切削温度升高,铣削深度的增加会导致切削力和切削温度升高;在相同铣削深度下,当铣削速度由500 m·min-1增大至1 000 m·min-1时,变质层厚度增大约30 μm,白层厚度增大约5 μm,表层显微硬度增大约200 HV,硬化层深度增大约100 μm;在相同铣削速度下,铣削深度每增大0.1 mm,变质层厚度增大约30 μm,白层厚度增大约3 μm,表层硬度增大20 HV,硬化层深度增大约20 μm。
      Abstract: High-speed milling of GH4169 nickel-based superalloy was carried out at different milling speeds (500-1 000 m·min-1) and radial milling depths (0.1-0.3 mm). The effects of milling parameters on cutting force, cutting temperature, metamorphic layer and white layer thickness and surface layer hardness were studied. The results show that with the increase of milling speed, the cutting force decreased and the cutting temperature increased. The increase of milling depth resulted in the increase of cutting force and cutting temperature. Under the same milling depth, when the milling speed increased from 500 m·min-1 to 1 000 m·min-1, the thickness of the metamorphic layer increased by about 30 μm, the thickness of the white layer increased by about 5 μm, the microhardness of the surface layer increased by about 200 HV, and the depth of the hardened layer increased by about 100 μm. Under the same milling speed, when the milling depth increased by 0.1 mm, the thickness of the metamorphic layer increased by about 30 μm, the thickness of the white layer increased by about 3 μm, the hardness of the surface layer increased by 20 HV, and the depth of the hardened layer increased by about 20 μm.
    • [1] 张方圆,段春争,王敏杰.已加工表面变质层的发展研究[J].机械设计与制造,2014(10):265-268.

      ZHANG F Y,DUAN C Z,WANG M J.Research status of the machined surface metamorphic layer[J].Machinery Design & Manufacture,2014(10):265-268.

      [2]

      BORCHERS F,CLAUSEN B,ECKERT S,et al.Comparison of different manufacturing processes of AISI 4140 steel with regard to surface modification and its influencing depth[J].Metals,2020,10(7):895.

      [3]

      GARCÍA NAVAS V,FERRERES I,MARAÑÓN J A,et al.Electro-discharge machining (EDM) versus hard turning and grinding:Comparison of residual stresses and surface integrity generated in AISI O1 tool steel[J].Journal of Materials Processing Technology,2008,195(1/2/3):186-194.

      [4]

      GRIFFITHS B J.Mechanisms of white layer generation with reference to machining and deformation processes[J].Journal of Tribology,1987,109(3):525-530.

      [5]

      YIN Q G,LIU Z Q,WANG B,et al.Recent progress of machinability and surface integrity for mechanical machining Inconel 718:A review[J].The International Journal of Advanced Manufacturing Technology,2020,109(1):215-245.

      [6]

      LIANG X L,LIU Z Q,WANG B.State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys:A review[J].Measurement,2019,132:150-181.

      [7]

      LI L,LAI D B,JI Q X,et al.Influence of tool characteristics on white layer produced by cutting hardened steel and prediction of white layer thickness[J].The International Journal of Advanced Manufacturing Technology,2021,113(3):1215-1228.

      [8]

      SUN J F,WANG T M,SU A P,et al.Surface integrity and its influence on fatigue life when turning nickel alloy GH4169[J].Procedia CIRP,2018,71:478-483.

      [9]

      DU J,LIU Z Q,LV S Y.Deformation-phase transformation coupling mechanism of white layer formation in high speed machining of FGH95 Ni-based superalloy[J].Applied Surface Science,2014,292:197-203.

      [10]

      PATURI U M R,VIDHYA DARSHINI B,REDDY N S.Progress of machinability on the machining of Inconel 718:A comprehensive review on the perception of cleaner machining[J].Cleaner Engineering and Technology,2021,5:100323.

      [11]

      M'SAOUBI R,AXINTE D,SOO S L,et al.High performance cutting of advanced aerospace alloys and composite materials[J].CIRP Annals,2015,64(2):557-580.

      [12]

      CHAIZE E,DUMONT F,TRUFFART B,et al.Influence of lubrication mode onto residual stress generation in turning[J].Procedia CIRP,2022,108:390-393.

      [13]

      SHARMAN A R C,HUGHES J I,RIDGWAY K.Workpiece surface integrity and tool life issues when turning inconel 718TM nickel based superalloy[J].Machining Science and Technology,2004,8(3):399-414.

      [14]

      SHARMAN A R C,HUGHES J I,RIDGWAY K.An analysis of the residual stresses generated in Inconel 718TM when turning[J].Journal of Materials Processing Technology,2006,173(3):359-367.

      [15]

      AUGSPURGER T,MEURER M,LIU H,et al.Experimental study of the connection between process parameters,thermo-mechanical loads and surface integrity in machining Inconel 718[J].Procedia CIRP,2020,87:59-64.

      [16]

      ARRAZOLA P J,KORTABARRIA A,MADARIAGA A,et al.On the machining induced residual stresses in IN718 nickel-based alloy:Experiments and predictions with finite element simulation[J].Simulation Modelling Practice and Theory,2014,41:87-103.

      [17] 任小平.高温合金GH4169车削加工表面完整性及抗疲劳加工工艺研究[D].济南:山东大学,2019. REN X P.Study on turning surface integrity and anti-fatigue processing technology of superalloy GH4169[D].Jinan:Shandong University,2019.
      [18]

      LI W,GUO Y B,BARKEY M E,et al.Effect tool wear during end milling on the surface integrity and fatigue life of inconel 718[J].Procedia CIRP,2014,14:546-551.

      [19]

      WOJCIECHOWSKI S,MATUSZAK M,POWAKA B,et al.Prediction of cutting forces during micro end milling considering chip thickness accumulation[J].International Journal of Machine Tools and Manufacture,2019,147:103466.

      [20]

      RANGANATH S,GUO C,HEGDE P.A finite element modeling approach to predicting white layer formation in nickel superalloys[J].CIRP Annals:Manufacturing Technology,2009,58:77-80.

      [21] 陈涛,刘献礼,李素燕,等.高速硬切削加工表面白层形成机理研究[J].机械工程学报,2015,51(23):182-188.

      CHEN T,LIU X L,LI S Y,et al.Mechanism of white layer formation on machined surface of high-speed hard machining[J].Journal of Mechanical Engineering,2015,51(23):182-188.

      [22]

      JIN D,LIU Z Q.Damage of the machined surface and subsurface in orthogonal milling of FGH95 superalloy[J].The International Journal of Advanced Manufacturing Technology,2013,68(5):1573-1581.

      [23]

      RAMESH A,MELKOTE S N,ALLARD L F,et al.Analysis of white layers formed in hard turning of AISI 52100 steel[J].Materials Science and Engineering:A,2005,390(1/2):88-97.

      [24]

      KOKO A,ELMUKASHFI E,BECKER T H,et al.In situ characterisation of the strain fields of intragranular slip bands in ferrite by high-resolution electron backscatter diffraction[J].Acta Materialia,2022,239:118284.

      [25] 吴明阳,张亚利,程耀楠,等.高压冷却下PCBN刀具切削高温合金表面残余应力分析及变质层成形机理[J].机械工程学报,2022,58(1):231-243.

      WU M Y,ZHANG Y L,CHENG Y N,et al.Analysis of surface residual stress and formation mechanism of metamorphic layer in PCBN tool cutting superalloy under high-pressure cooling[J].Journal of Mechanical Engineering,2022,58(1):231-243.

    计量
    • 文章访问数:  11
    • HTML全文浏览量:  0
    • PDF下载量:  3
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-07-26
    • 修回日期:  2023-08-05
    • 刊出日期:  2023-10-19

    目录

      /

      返回文章
      返回