• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

正火冷却方式对9%Cr铁素体耐热钢组织与力学性能的影响

马廷威, 王玉红, 郝宪朝, 王平, 张宇博

马廷威, 王玉红, 郝宪朝, 王平, 张宇博. 正火冷却方式对9%Cr铁素体耐热钢组织与力学性能的影响[J]. 机械工程材料, 2023, 47(10): 85-90. DOI: 10.11973/jxgccl202310014
引用本文: 马廷威, 王玉红, 郝宪朝, 王平, 张宇博. 正火冷却方式对9%Cr铁素体耐热钢组织与力学性能的影响[J]. 机械工程材料, 2023, 47(10): 85-90. DOI: 10.11973/jxgccl202310014
MA Tingwei, WANG Yuhong, HAO Xianchao, WANG Ping, ZHANG Yubo. Effect of Normalizing Cooling Method on Microstructure and Mechanical Properties of 9%Cr Ferritic Heat Resistant Steel[J]. Materials and Mechanical Engineering, 2023, 47(10): 85-90. DOI: 10.11973/jxgccl202310014
Citation: MA Tingwei, WANG Yuhong, HAO Xianchao, WANG Ping, ZHANG Yubo. Effect of Normalizing Cooling Method on Microstructure and Mechanical Properties of 9%Cr Ferritic Heat Resistant Steel[J]. Materials and Mechanical Engineering, 2023, 47(10): 85-90. DOI: 10.11973/jxgccl202310014

正火冷却方式对9%Cr铁素体耐热钢组织与力学性能的影响

基金项目: 

营口理工学院2022年大学生创新创业项目(X202214435027)

详细信息
    作者简介:

    马廷威(1978-),男,辽宁辽阳人,副教授,博士

    通讯作者:

    郝宪朝副研究员

    王平教授

  • 中图分类号: TG142.1

Effect of Normalizing Cooling Method on Microstructure and Mechanical Properties of 9%Cr Ferritic Heat Resistant Steel

  • 摘要: 采取油冷和水冷2种冷却方式对9%Cr铁素体耐热钢进行正火处理,再进行回火,研究了正火冷却方式对该钢组织和力学性能的影响。结果表明:与水冷相比,油冷处理后试验钢的马氏体板条宽度较大,位错密度较小,晶界上析出的M23C6碳化物尺寸较小;与水冷相比,油冷处理后试验钢的屈服强度、抗拉强度、断后伸长率以及上平台冲击吸收功分别提高了9.3%,4.7%,6.1%,5.4%,韧脆转变温度降低了17.7 ℃,拉伸性能和冲击性能提高。
    Abstract: The 9%Cr ferritic heat resistant steel was normalized by oil cooling and water cooling, and then was tempered. The effects of normalizing cooling methods on the microstructure and mechanical properties of the test steel were studied. The results show that compared with those by water cooling, the strip width of the martensitic slats of the test steel by oil cooling was larger, the dislocation density was smaller, and the size of M23C6 carbide precipitated on the grain boundary was smaller. Compared with those by water cooling, the yield strength, tensile strength, percentage elongation after facture and impact absorption work on the upper platform of the test steel by oil cooling increased by 9.3%, 4.7%, 6.1%, 5.4%, respectively, and the tough-brittle transition temperature was reduced by 17.7 ℃; the tensile properties and impact properties were enhanced.
  • [1]

    VISWANATHAN R,BAKKER W.Materials for ultrasupercritical coal power plants-turbine materials:Part II[J].Journal of Materials Engineering and Performance,2001,10(1):96-101.

    [2]

    MASUYAMA F.History of power plants and progress in heat resistant steels[J].ISIJ International,2001,41(6):612-625.

    [3]

    ABE F,NODA T,ARAKI H,et al.Development of reduced-activation martensitic 9Cr steels for fusion reactor[J].Journal of Nuclear Science and Technology,1994,31(4):279-292.

    [4]

    SAMANTARAY D,MANDAL S,BHADURI A K.Characterization of deformation instability in modified 9Cr-1Mo steel during thermo-mechanical processing[J].Materials & Design,2011,32(2):716-722.

    [5]

    CERRI E,EVANGELISTA E,SPIGARELLI S,et al.Evolution of microstructure in a modified 9Cr-1Mo steel during short term creep[J].Materials Science and Engineering:A,1998,245(2):285-292.

    [6]

    KLUEH R,NELSON A T.Ferritic/martensitic steels for next-generation reactors[J].Journal of Nuclear Materials,2007,371(1/2/3):37-52.

    [7]

    YOSHIZAWA M,IGARASHI M.Long-term creep deformation characteristics of advanced ferritic steels for USC power plants[J].International Journal of Pressure Vessels and Piping,2007,84(1/2):37-43.

    [8] 刘建章.核结构材料[M].北京:化学工业出版社,2007.

    LIU J Z.Nuclear structural material[M].Beijing:Chemical Industry Press,2007.

    [9]

    ABE F,HORIUCHI T,TANEIKE M,et al.Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature[J].Materials Science and Engineering:A,2004,378(1/2):299-303.

    [10]

    POROLLO S I,DVORIASHIN A M,KONOBEEV Y V,et al.Microstructure and mechanical properties of ferritic/martensitic steel EP-823 after neutron irradiation to high doses in BOR-60[J].Journal of Nuclear Materials,2004,329/330/331/332/333:314-318.

    [11]

    MARUYAMA K,SAWADA K,KOIKE J.Strengthening mechanisms of creep resistant tempered martensitic steel[J].ISIJ International,2001,41:641-653.

    [12]

    ZHANG Z B,MISHIN O V,TAO N R,et al.Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains[J].Journal of Nuclear Materials,2015,458:64-69.

    [13] 王福晶,易丹青,王斌,等.冷却方式对T91钢连铸坯组织及性能的影响[J].粉末冶金材料科学与工程,2012,17(5):634-638.

    WANG F J,YI D Q,WANG B,et al.Effect of cooling method on microstructure and properties of high-alloy-casting steel T91[J].Materials Science and Engineering of Powder Metallurgy,2012,17(5):634-638.

    [14] 殷红旗,刘永长,宁保群,等.冷却速度对T91相变速度和产物的影响[J].材料科学与工程学报,2007,25(1):118-121.

    YIN H Q,LIU Y C,NING B Q,et al.Effect of cooling velocity on phase transformation and formation of steel T91[J].Journal of Materials Science and Engineering,2007,25(1):118-121.

    [15] 许小虎,邹旸,尚延涛,等.1Cr13Ni马氏体钢不同冷却方式的回火组织与力学性能研究[J].热加工工艺,2019,48(10):196-199.

    XU X H,ZOU Y,SHANG Y T,et al.Study on tempering microstructure and mechanical properties of 1Cr13Ni martensitic steel under different cooling conditions[J].Hot Working Technology,2019,48(10):196-199.

    [16]

    WAN Q M,WANG R S,SHU G G,et al.Analysis method of Charpy V-notch impact data before and after electron beam welding reconstitution[J].Nuclear Engineering and Design,2011,241(2):459-463.

    [17] 张芮辉,张弛,夏志新,等.T91铁素体耐热钢析出相的优化控制[J].金属学报,2013,49(9):1075-1080.

    ZHANG R H,ZHANG C,XIA Z X,et al.Optimizing control of precipitates in T91 ferritic heat-resistan steel[J].Acta Metallurgica Sinica,2013,49(9):1075-1080.

    [18]

    TAN L,BUSBY J T.Formulating the strength factor α for improved predictability of radiation hardening[J].Journal of Nuclear Materials,2015,465:724-730.

    [19]

    MARUYAMA K,SAWADA K,KOIKE J.Strengthening mechanisms of creep resistant tempered martensitic steel[J]. ISIJ international, 2001, 41(6):641-653.

    [20] 范华,杨功显.超临界与超超临界汽轮机组用材[J].东方电气评论,2005,19(2):90-97.

    FAN H,YANG G X.Materials used for supercritical and ultra supercritical steam turbine unit[J].Dongfang Electric Review,2005,19(2):90-97.

    [21]

    LIU C,BHOLE S D.Challenges and developments in pipeline weldability and mechanical properties[J].Science and Technology of Welding and Joining,2013,18(2):169-181.

    [22] 张亚辉,王立民,胡日.固溶后冷却方式对Inconel X-750合金组织和性能的影响[J].金属热处理,2020,45(1):105-111.

    ZHANG Y H,WANG L M,HU R.Effect of cooling mode on microstructure and properties of solution treated Inconel X-750 alloy[J].Heat Treatment of Metals,2020,45(1):105-111.

    [23] 雍歧龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006:37.

    YONG Q L.The second phase in steel materials[M].Beijing:Metallurgical Industry Press,2006:37.

计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-25
  • 修回日期:  2023-08-10
  • 刊出日期:  2023-10-19

目录

    /

    返回文章
    返回