• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

基于第一性原理分析铈对Al-Ti-B-Ce中间合金中TiB2界面行为的影响

李龙泽, 傅高升, 陈鸿玲, 宋莉莉, 王火生

李龙泽, 傅高升, 陈鸿玲, 宋莉莉, 王火生. 基于第一性原理分析铈对Al-Ti-B-Ce中间合金中TiB2界面行为的影响[J]. 机械工程材料, 2023, 47(10): 104-110. DOI: 10.11973/jxgccl202310017
引用本文: 李龙泽, 傅高升, 陈鸿玲, 宋莉莉, 王火生. 基于第一性原理分析铈对Al-Ti-B-Ce中间合金中TiB2界面行为的影响[J]. 机械工程材料, 2023, 47(10): 104-110. DOI: 10.11973/jxgccl202310017
LI Longze, FU Gaosheng, CHEN Hongling, SONG Lili, WANG Huosheng. Effect of Ce on TiB2 Interface Behavior in Al-Ti-B-Ce Master Alloy Analyzed by First-Principles[J]. Materials and Mechanical Engineering, 2023, 47(10): 104-110. DOI: 10.11973/jxgccl202310017
Citation: LI Longze, FU Gaosheng, CHEN Hongling, SONG Lili, WANG Huosheng. Effect of Ce on TiB2 Interface Behavior in Al-Ti-B-Ce Master Alloy Analyzed by First-Principles[J]. Materials and Mechanical Engineering, 2023, 47(10): 104-110. DOI: 10.11973/jxgccl202310017

基于第一性原理分析铈对Al-Ti-B-Ce中间合金中TiB2界面行为的影响

基金项目: 

福建省自然科学基金资助项目(2017J01156)

详细信息
    作者简介:

    李龙泽(1997-),男,福建宁德人,硕士研究生

  • 中图分类号: TB31

Effect of Ce on TiB2 Interface Behavior in Al-Ti-B-Ce Master Alloy Analyzed by First-Principles

  • 摘要: 采用基于密度泛函理论的第一性原理,通过筛选建立了以8种最主要的高对称性原子堆垛方式形成的TiB2(0001)//TiB2(0001)界面模型,计算了Al-Ti-B中间合金中掺杂稀土铈前后该界面的黏附功以及铈在界面处的偏聚焓和在(0001)面的吸附能,分析了铈对TiB2界面行为的影响。结果表明:细化剂中掺杂铈后由2个以钛原子为终端的表面通过心位方式堆垛形成的界面和由以钛原子为终端的表面与以硼原子为终端的表面通过心位堆垛形成的界面的黏附功降低,有助于TiB2弥散分布;铈在该界面处的偏聚焓为正值,无法自发偏聚到界面处,铈在TiB2(0001)表面上具有较高的吸附能,可抑制TiB2在此面的堆垛生长。
    Abstract: Eight kinds of high symmetry atomic stacking TiB2(0001)//TiB2(0001) interface models were sifted and established by first-principles based on density-functional theory. The adhesion work of the interfaces before and after rare earth Ce doping in Al-Ti-B master alloy, and the segregation enthalpy of Ce at the interfaces and the adsorption energy on the TiB2(0001) surface were calculated. The effect of Ce on the TiB2 interface behavior was analyzed. The results show that after Ce doping, the adhesion worked of the interface formed by center site stacking two surfaces with two titanium atoms as the terminal and the interface formed by stacking surfaces with titanium atoms as the terminal and with boron atoms as the terminal decreased to promot the dispersed distribution of TiB2. The segregation enthalpy of Ce at the interfaces was positive, indicating that Ce could not spontaneously segregate to the interface. Ce had high adsorption energy on the TiB2(0001) surface and could inhibit the stacking growth of TiB2 on the surface.
  • [1] 李鹏廷.铝溶体中原位生成TiB2与LaB6的生长机制及控制[D].济南:山东大学,2013. LI P T.Growth mechanism and control of TiB2 and LaB6 formed in-situ in aluminum solution[D].Jinan:Shandong University,2013.
    [2] 李勇,庄洪宇,潘学民.激光辐照参数对自蔓延合成铝-钛-硼中间合金组织和性能的影响[J].机械工程材料,2009,33(9):13-16.

    LI Y,ZHUANG H Y,PAN X M.Influence of laser parameters on microstructure and property of Al-Ti-B master alloy prepared by laser-induced SHS[J].Materials for Mechanical Engineering,2009,33(9):13-16.

    [3] 傅高升,孙锋山,任立英,等.微量稀土对工业纯铝中杂质相的变质行为[J].中国稀土学报,2001,19(2):133-137.

    FU G S,SUN F S,REN L Y,et al.Modification behavior of trace rare earth on impurity phases in commercial pure aluminum[J].Journal of the Chinese Rare Earth Society,2001,19(2):133-137.

    [4] 傅高升,陈文哲,钱匡武.Al3Ti1B1RE细化剂对罐用铝材的细化效果及稀土的作用[J].中国稀土学报,2003,21(5):558-563.

    FU G S,CHEN W Z,QIAN K W.Refining effect of new Al3Ti1B1RE master alloy on aluminum sheet used for pressure can and behavior of rare earths in master alloy[J].Journal of the Chinese Rare Earth Society,2003,21(5):558-563.

    [5] 陈鸿玲,傅高升,颜文煅.新型AlTiBRE中间合金细化剂的微观组织特征分析[J].福建工程学院学报,2007,5(1):15-19.

    CHEN H L,FU G S,YAN W D.Analysis of the microstructure character of a new type of AlTiBRE master alloy refiner[J].Journal of Fujian University of Technology,2007,5(1):15-19.

    [6] 高倩倩.原位反应生产新型细化剂AlTiBRE的净化处理关键技术研究[D].福州:福州大学,2014. GAO Q Q.Study on the key technology of purification treatment for producing a new refiner AlTiBRE by in-situ reaction[D].Fuzhou:Fuzhou University,2014.
    [7] 林燕清.自制高效细化剂AlTiBRE对A356铝合金的细化效果试验[D].福州:福州大学,2017. LIN Y Q.Experimental study on refining effect of self-made high-efficiency refiner AlTiBRE on A356 aluminum alloy[D].Fuzhou:Fuzhou University,2017.
    [8]

    MCCARTNEY D G.Grain refining of aluminium and its alloys using inoculants[J].International Materials Reviews,1989,34(1):247-260.

    [9]

    MOHANTY P S,GRUZLESKI J E.Mechanism of grain refinement in aluminium[J].Acta Metallurgica et Materialia,1995,43(5):2001-2012.

    [10]

    XU X X,FENG Y T,FAN H,et al.The grain refinement of 1070 alloy by different Al-Ti-B mater alloys and its influence on the electrical conductivity[J].Results in Physics,2019,14:102482.

    [11]

    ZHANG L L,JIANG H X,ZHAO J Z,et al.Microstructure and grain refining efficiency of Al-5Ti-1B master alloys prepared by halide salt route[J].Journal of Materials Processing Technology,2017,246:205-210.

    [12]

    CLARK S J,SEGALL M D,PICKARD C J,et al.First principles methods using CASTEP[J].Zeitschrift Für Kristallographie,2005,220(5/6):567-570.

    [13]

    MORENO J,SOLER J M.Optimal meshes for integrals in real- and reciprocal-space unit cells[J].Physical Review B,1992,45(24):13891-13898.

    [14] 黄元春,邵虹榜,肖政兵,等.Al-Ti-B合金中AlB2、TiB2和TiAl3的第一性原理研究[J].中国有色金属学报,2018,28(8):1491-1498.

    HUANG Y C,SHAO H B,XIAO Z B,et al.First principle study of AlB2,TiB2 and TiAl3 in Al-Ti-B alloy[J].The Chinese Journal of Nonferrous Metals,2018,28(8):1491-1498.

    [15]

    HAN Y F,DAI Y B,SHU D,et al.First-principles calculations on the stability of Al/TiB2 interface[J].Applied Physics Letters,2006,89(14):144107.

    [16]

    WANG M L.The investigation of dependences of mechanical and electronic properties of TiB2 on pressure using the first-principles method[J].Physica Scripta,2014,89(11):115702.

    [17] 姚强,邢辉,孟丽君,等.TiB2和TiB弹性性质的理论计算[J].中国有色金属学报,2007,17(8):1297-1301.

    YAO Q,XING H,MENG L J,et al.Theoretical calculation of elastic properties of TiB2 and TiB[J].The Chinese Journal of Nonferrous Metals,2007,17(8):1297-1301.

    [18]

    PENG F,FU H Z,CHENG X L.First-principles calculations of thermodynamic properties of TiB2 at high pressure[J].Physica B:Condensed Matter,2007,400(1/2):83-87.

    [19]

    JAIN A, ONG S P, HAUTIER G, et al. Commentary:The materials project:A materials genome approach to accelerating materials innovation[J]. APL Materials, 2013, 1(1):011002.

    [20]

    HYMAN M E,MCCULLOUGH C,LEVI C G,et al.Evolution of boride morphologies in TiAl-B alloys[J].Metallurgical Transactions A,1991,22(7):1647-1662.

    [21]

    LI P T,LI Y G,NIE J F,et al.Influence of forming process on three-dimensional morphology of TiB2 particles in Al-Ti-B alloys[J].Transactions of Nonferrous Metals Society of China,2012,22(3):564-570.

    [22]

    LI P T,WU Y Y,LIU X F.Controlled synthesis of different morphologies of TiB2 microcrystals by aluminum melt reaction method[J].Materials Research Bulletin,2013,48(6):2044-2048.

    [23]

    HOLEC D, DUMITRASCHKEWITZ P, VOLLATH D, et al. Surface energy of Au nanoparticles depending on their size and shape[J]. Nanomaterials, 2020, 10(3):484.

    [24]

    SEYED-TALEBI S M, KAZEMINEZHAD I, BEHESHTIAN J. Theoretical prediction of silicene as a new candidate for the anode of lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2015, 17(44):29689-29696.

    [25]

    MOMMA K,IZUMI F.VESTA 3 for three-dimensional visualization of crystal,volumetric and morphology data[J].Journal of Applied Crystallography,2011,44(6):1272-1276.

    [26] 陈煜,姚正军,张平则,等.铬、钼原子对FeAl/Fe3Al相界面结合能和电子结构的影响[J].机械工程材料,2016,40(5):96-100.

    CHEN Y,YAO Z J,ZHANG P Z,et al.Effect of Cr,Mo atoms on cohesive energy and electronic structure of FeAl/Fe3Al phase interfaces[J].Materials for Mechanical Engineering,2016,40(5):96-100.

    [27]

    ZHANG W,SMITH J R,WANG X G,et al.Influence of sulfur on the adhesion of the nickel/alumina interface[J]. Physical Review B, 2013, 67(24):2455414.

    [28] 熊辉辉,刘昭,张恒华,等.合金元素对钢中NbC异质形核影响的第一性原理研究[J].物理学报,2017,66(16):168101. XIONG H H,LIU Z,ZHANG H H,et al.First-principles calculation of influence of alloying elements on NbC heterogeneous nucleation in steel[J].Acta Physica Sinica,2017,66(16):168101.
    [29] 杨世清,梁国星,吕明.镀镍界面吸附能与电子特性的第一性原理研究[J].热加工工艺,2021,50(2):27-30.

    YANG S Q,LIANG G X,LYU M.First-principle study on adsorption energy and electronic characteristics of Ni plating interface[J].Hot Working Technology,2021,50(2):27-30.

    [30]

    GHOSH D C,BISWAS R,CHAKRABORTY T,et al.The wave mechanical evaluation of the absolute radii of atoms[J].Journal of Molecular Structure:THEOCHEM,2008,865(1/2/3):60-67.

    [31]

    HAN Y F, DAI Y B, SHU D, et al. First-principles study of TiB2(0001) surfaces[J]. Journal of physics:Condensed Matter, 2006, 18(17):4197-4205.

    [32]

    BECKE A D,EDGECOMBE K E.A simple measure of electron localization in atomic and molecular systems[J].The Journal of Chemical Physics,1990,92(9):5397-5403.

    [33]

    TRIVEDI R,BANERJEE A,BANDYOPADHYAY D.Study of electronic structure,stabilities and electron localization behavior of AgPbn (n=1-14) nanoclusters:A first principal investigation[J].Physica E:Low-Dimensional Systems and Nanostructures,2021,131:114725.

    [34]

    WANG J S,HORSFIELD A,SCHWINGENSCHLÖGL U,et al.Heterogeneous nucleation of solid Al from the melt by TiB2 and Al3Ti:Anab initiomolecular dynamics study[J].Physical Review B,2010,82(18):184203.

    [35]

    WANG X J,XU C,MUHAMMAD A,et al.Effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg alloy[J].Transactions of Nonferrous Metals Society of China,2014,24(7):2244-2250.

计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 修回日期:  2023-07-19
  • 刊出日期:  2023-10-19

目录

    /

    返回文章
    返回