• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

掺杂Y2O3钨基复合材料在近韧脆转变温区的静载拉伸特性

黄俊, 李阳阳, 袁国虎, 左彤, 罗来马, 徐光青, 吕珺, 谭晓月, 洪雨, 朱晓勇, 吴玉程

黄俊, 李阳阳, 袁国虎, 左彤, 罗来马, 徐光青, 吕珺, 谭晓月, 洪雨, 朱晓勇, 吴玉程. 掺杂Y2O3钨基复合材料在近韧脆转变温区的静载拉伸特性[J]. 机械工程材料, 2023, 47(11): 18-24. DOI: 10.11973/jxgccl202311004
引用本文: 黄俊, 李阳阳, 袁国虎, 左彤, 罗来马, 徐光青, 吕珺, 谭晓月, 洪雨, 朱晓勇, 吴玉程. 掺杂Y2O3钨基复合材料在近韧脆转变温区的静载拉伸特性[J]. 机械工程材料, 2023, 47(11): 18-24. DOI: 10.11973/jxgccl202311004
HUANG Jun, LI Yangyang, YUAN Guohu, ZUO Tong, LUO Laima, XU Guangqing, LYU Jun, TAN Xiaoyue, HONG Yu, ZHU Xiaoyong, WU Yucheng. Static Tensile Properties near Ductile-Brittle Transition Temperature Region of W-based Composites Doped with Y2O3[J]. Materials and Mechanical Engineering, 2023, 47(11): 18-24. DOI: 10.11973/jxgccl202311004
Citation: HUANG Jun, LI Yangyang, YUAN Guohu, ZUO Tong, LUO Laima, XU Guangqing, LYU Jun, TAN Xiaoyue, HONG Yu, ZHU Xiaoyong, WU Yucheng. Static Tensile Properties near Ductile-Brittle Transition Temperature Region of W-based Composites Doped with Y2O3[J]. Materials and Mechanical Engineering, 2023, 47(11): 18-24. DOI: 10.11973/jxgccl202311004

掺杂Y2O3钨基复合材料在近韧脆转变温区的静载拉伸特性

基金项目: 

国家自然科学基金国际(地区)合作研究与交流项目(52020105014)

详细信息
    作者简介:

    黄俊(1983-),女,安徽安庆人,副教授,博士

    通讯作者:

    吴玉程教授

  • 中图分类号: TG146.4

Static Tensile Properties near Ductile-Brittle Transition Temperature Region of W-based Composites Doped with Y2O3

  • 摘要: 制备了掺杂质量分数分别为0.5%,2.0% Y2O3的钨基复合材料,研究了其显微组织,通过不同温度(25~800℃)下的拉伸试验分析了其近韧脆转变温区的变形特性。结果表明:2种复合材料均存在由轧制变形导致的大量位错,Y2O3颗粒对位错运动起到钉扎作用;Y2O3掺杂质量分数为2.0%的复合材料的晶粒更细小,发生韧脆转变的温度更低,在300~400℃拉伸时发生半脆性行为,断口区域位错密度在3.8×1015~3.9×1015 m-2,在600~800℃下发生明显塑性变形,位错密度增加至6.2×1015~6.8×1015 m-2
    Abstract: W-based composites doped with 0.5wt% and 2.0wt% Y2O3 were prepared. The microstructure of the composites was investigated. The deformation characteristics near ductile-brittle transition temperature region of the composites were analyzed by tensile tests at different temperatures (25-800℃). The results show that the two composites had a large number of dislocations formed by rolling deformation, and Y2O3 particles played a pinning role in dislocation motion. The composite containing 2.0wt% Y2O3 had smaller grain size and a lower ductile-brittle transition temperature. The semi-brittle behavior of the composite containing 2.0wt% Y2O3 occurred during tension at 300-400℃, and the dislocation density in the fracture area was between 3.8×1015-3.9×1015 m-2; during tension at 600-800℃, plastic deformation occurred, and the dislocation density increased to 6.2×1015-6.8×1015 m-2.
  • [1] 李建刚.托卡马克研究的现状及发展[J].物理,2016,45(2):88-97.

    LI J G.The status and progress of tokamak research[J].Physics,2016,45(2):88-97.

    [2] 周张健,钟志宏,沈卫平,等.聚变堆中面向等离子体材料的研究进展[J].材料导报,2005,19(12):5-8.

    ZHOU Z J,ZHONG Z H,SHEN W P,et al.The development of plasma facing materials for fusion reactor[J].Materials Review,2005,19(12):5-8.

    [3]

    BACHMANN C,AIELLO G,ALBANESE R,et al.Initial DEMO tokamak design configuration studies[J].Fusion Engineering and Design,2015,98/99:1423-1426.

    [4]

    LIBEYRE P,SCHILD T,BRUTON A,et al.From manufacture to assembly of the ITER central solenoid[J].Fusion Engineering and Design,2019,146:437-440.

    [5]

    HILL D N.A review of ELMs in divertor tokamaks[J].Journal of Nuclear Materials,1997,241/242/243:182-198.

    [6]

    BOLT H,BARABASH V,KRAUSS W,et al.Materials for the plasma-facing components of fusion reactors[J].Journal of Nuclear Materials,2004,329/330/331/332/333:66-73.

    [7]

    COENEN J W,ANTUSCH S,AUMANN M,et al.Materials for DEMO and reactor applications:Boundary conditions and new concepts[J].Physica Scripta,2016,T167:014002.

    [8]

    LINSMEIER C,RIETH M,AKTAA J,et al.Development of advanced high heat flux and plasma-facing materials[J].Nuclear Fusion,2017,57(9):092007.

    [9]

    HATANO Y,AMI K,ALIMOV V K,et al.Deuterium retention in W and W-Re alloy irradiated with high energy Fe and W ions:Effects of irradiation temperature[J].Nuclear Materials and Energy,2016,9:93-97.

    [10]

    WANG C J,DONG X N,WEI S Z,et al,Effect of hot-working process on interface structure and ductile-to-brittle transition temperature of tungsten alloy reinforced by Al2O3 particles[J].International Journal of Refractory Metals and Hard Materials,2022,108:105945.

    [11]

    YAO G,ZHAO Z H,LUO L M,et al.Damage evolutions of completely recrystallized W-Y2O3 composite evaluated using the dual effects of electron beam thermal shock and helium ion irradiation[J].Materials Chemistry and Physics,2021,271:124947.

    [12]

    YAO G,TAN X Y,LUO L M,et al.Influence of helium ion irradiation damage behavior after laser thermal shock of W-2%vol Y2O3 composites[J].Progress in Nuclear Energy,2020,121:103241.

    [13]

    DONG Z,MA Z Q,YU L M,et al.Enhanced mechanical properties in oxide-dispersion-strengthened alloys achieved via interface segregation of cation dopants[J].Science China Materials,2021,64(4):987-998.

    [14]

    DONG Z,MA Z Q,YU L M,et al.Nanoscale segregation mechanism of cation dopant at the matrix/oxide interface in oxide dispersion-strengthened alloys[J].Journal of Materials Science,2021,56(10):6251-6268.

    [15]

    HUANG L,JIANG L,TOPPING T D,et al.In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure[J].Acta Materialia,2017,122:19-31.

    [16]

    XU Q,DING X Y,LUO L M,et al.Thermal stability and evolution of microstructures induced by He irradiation in W-TiC alloys[J].Nuclear Materials and Energy,2018,15:76-79.

    [17]

    LANG S T,YAN Q Z,SUN N B,et al.Microstructure,basic thermal-mechanical and Charpy impact properties of W-0.1wt.% TiC alloy via chemical method[J].Journal of Alloys and Compounds,2016,660:184-192.

    [18]

    ZHANG Y,GANEEV V A,WANG T J,et al,Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity[J].Materials Science & Engineering A,2008,503(1):37-40.

    [19]

    LEVIN Z S,HARTWIG K T.Strong ductile bulk tungsten[J].Materials Science and Engineering:A,2017,707:602-611.

    [20]

    RIESCH J,AUMANN M,COENEN J W,et al.Chemically deposited tungsten fibre-reinforced tungsten:The way to a mock-up for divertor applications[J].Nuclear Materials and Energy,2016,9:75-83.

    [21]

    MAO Y,COENEN J W,RIESCH J,et al.Influence of the interface strength on the mechanical properties of discontinuous tungsten fiber-reinforced tungsten composites produced by field assisted sintering technology[J].Composites Part A:Applied Science and Manufacturing,2018,107:342-353.

    [22]

    YE J H,XU L J,ZHAO Y C,et al.DBTT and tensile properties of as-sintered tungsten alloys reinforced by yttrium-zirconium oxide[J]. Journal of Nuclear Materials,2023,578:154318.

    [23]

    XIE Z M,LIU R,MIAO S,et al.Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature[J]. Scientific reports,2015,5(1):16014.

    [24]

    SCAPIN M,PERONI L,TORREGROSA C,et al.Effect of strain-rate and temperature on mechanical response of pure tungsten[J].Journal of Dynamic Behavior of Materials,2019,5(3):296-308.

    [25]

    YAO G,TAN X Y,FU M Q,et al.Isotropic thermal conductivity in rolled large-sized W-Y2O3 bulk material prepared by powder metallurgy route and rolling deformation technology[J].Fusion Engineering and Design,2018,137:325-330.

    [26]

    MOTE V,PURUSHOTHAM Y,DOLE B.Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles[J].Journal of Theoretical and Applied Physics,2012,6(1):6.

    [27] 郭宁.桥梁缆索用冷拔珠光体钢丝微观组织表征及力学性能研究[D].重庆:重庆大学,2012. GUO N.Microstructure characterization and mechanical properties of cold-drawn pearlite steel wire for bridge cables[D].Chongqing:Chongqing University,2012.
    [28]

    ZHANG Y F,JI Z,JIA C C,et al.Influence of lanthanum on enhancement of mechanical and electrical properties of Cu-Al2O3 composites[J].Journal of Rare Earths,2019,37(5):534-540.

    [29]

    SHEN T L,DAI Y,LEE Y.Microstructure and tensile properties of tungsten at elevated temperatures[J].Journal of Nuclear Materials,2016,468:348-354.

    [30]

    NAGY D,HUMPHRY-BAKER S A.An oxidation mechanism map for tungsten[J].Scripta Materialia,2022,209:114373.

    [31]

    DU W B,YAO Z J,TAO X W,et al.Oxidation behavior and mechanism of directional order two-scale lamellar porous Ti3SiC2 compound[J].Journal of Alloys and Compounds,2022,927:166998.

    [32]

    SAMAEE V,GATTI R,DEVINCRE B,et al.Dislocation driven nanosample plasticity:New insights from quantitative in situ TEM tensile testing[J].Scientific Reports,2018,8:12012.

计量
  • 文章访问数:  10
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-22
  • 修回日期:  2023-08-01
  • 刊出日期:  2023-11-19

目录

    /

    返回文章
    返回