• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

不同含量Ti3AlC2/Cu复合材料在不同条件下的摩擦学性能

侯曌, 贾均红, 何乃如

侯曌, 贾均红, 何乃如. 不同含量Ti3AlC2/Cu复合材料在不同条件下的摩擦学性能[J]. 机械工程材料, 2023, 47(11): 35-42,50. DOI: 10.11973/jxgccl202311007
引用本文: 侯曌, 贾均红, 何乃如. 不同含量Ti3AlC2/Cu复合材料在不同条件下的摩擦学性能[J]. 机械工程材料, 2023, 47(11): 35-42,50. DOI: 10.11973/jxgccl202311007
HOU Zhao, JIA Junhong, HE Nairu. Tribological Properties of Different Content Ti3AlC2/Cu Composites under Different Conditions[J]. Materials and Mechanical Engineering, 2023, 47(11): 35-42,50. DOI: 10.11973/jxgccl202311007
Citation: HOU Zhao, JIA Junhong, HE Nairu. Tribological Properties of Different Content Ti3AlC2/Cu Composites under Different Conditions[J]. Materials and Mechanical Engineering, 2023, 47(11): 35-42,50. DOI: 10.11973/jxgccl202311007

不同含量Ti3AlC2/Cu复合材料在不同条件下的摩擦学性能

详细信息
    作者简介:

    侯曌(1998-),男,陕西咸阳人,硕士研究生

    通讯作者:

    何乃如副教授

  • 中图分类号: TB331

Tribological Properties of Different Content Ti3AlC2/Cu Composites under Different Conditions

  • 摘要: 以不同温度(1 300,1 350,1 400℃)下无压烧结Ti3AlC2粉末以及铜粉末为原料,采用粉末冶金法制备Ti3AlC2/Cu复合材料,研究了不同Ti3AlC2含量(质量分数5%,10%,15%,20%)下复合材料在干摩擦条件以及蒸馏水和海水环境下的摩擦学性能。结果表明:无压烧结Ti3AlC2粉末的适宜温度为1 350℃,此时Ti3AlC2质量分数为96%;随着Ti3AlC2含量的增加,复合材料的相对密度降低,硬度先升后降,当Ti3AlC2的质量分数为15%时,硬度最高,约为120 HV;在干摩擦条件下,随着Ti3AlC2含量的增加,复合材料的摩擦因数和磨损率均显著降低;复合材料在蒸馏水和海水环境中的磨损率均低于干摩擦条件下,在蒸馏水环境中的摩擦因数高于干摩擦条件,而在海水环境中的摩擦因数低于在蒸馏水环境且略高于干摩擦条件下。
    Abstract: With Ti3AlC2 powder prepared by pressureless sintering at different temperatures (1 300,1 350,1 400℃) and copper powder as raw materials, Ti3AlC2/Cu composites were prepared by powder metallurgy. The tribological properties of composites with different content of Ti3AlC2 (mass fraction of 5%, 10%, 15%, 15%) under dry friction condition and in distilled water and seawater environments. The results show that the optimum pressureless sintering temperature of Ti3AlC2 powder was 1 350℃, and the mass fraction of Ti3AlC2 was 96%. With increasing Ti3AlC2 content, the relative density of the composite decreased, and the hardness increased first and then decreased, and reached the highest value (about 120 HV) when the mass fraction of Ti3AlC2 was 15%. Under dry friction condition, the friction coefficient and wear rate of the composite decreased significantly with increasing Ti3AlC2 content. The wear rates of composites in distilled water and seawater environments were lower than those under dry friction condition; the friction coefficient in distilled water environment was higher than that under dry friction condition, and in seawater environment was lower than that in distilled water environment and slightly higher than that under dry friction condition.
  • [1]

    CHEN B M,BI Q L,YANG J,et al.Tribological properties of solid lubricants (graphite,h-BN) for Cu-based P/M friction composites[J].Tribology International,2008,41(12):1145-1152.

    [2]

    MA X C,HE G Q,HE D H,et al.Sliding wear behavior of copper-graphite composite material for use in maglev transportation system[J].Wear,2008,265(7/8):1087-1092.

    [3]

    SINGH J B,CAI W,BELLON P.Dry sliding of Cu-15wt%Ni-8wt%Sn bronze:Wear behaviour and microstructures[J].Wear,2007,263(1/2/3/4/5/6):830-841.

    [4]

    NAYEB-HASHEMI H,VAZIRI A,ZIEMER K.Wear resistance of Cu-18vol.% Nb (P/M) composites[J].Materials Science and Engineering:A,2008,478(1/2):390-396.

    [5] 陈爱华,闫晨,孟志立.铜基复合材料制备及研究新进展[J].中国冶金,2019,29(2):7-11.

    CHEN A H,YAN C,MENG Z L.Preparation and research progress of copper matrix composites[J].China Metallurgy,2019,29(2):7-11.

    [6] 徐金城,李晓龙,夏龙,等.短碳纤维增强铜基复合材料的制备及其性能的研究[J].兰州大学学报,2004,40(4):28-32.

    XU J C,LI X L,XIA L,et al.Preparation of Cf/Cu composite and investigations in its properties[J].Journal of Lanzhou University (Natural Science Edition),2004,40(4):28-32.

    [7]

    ZHAO Z Y,BAI P,DU W,et al.An overview of graphene and its derivatives reinforced metal matrix composites:Preparation,properties and applications[J].Carbon,2020,170:302-326.

    [8]

    ZENG J,XU J C,HUA W,et al.Wear performance of the lead free tin bronze matrix composite reinforced by short carbon fibers[J].Applied Surface Science,2009,255(13/14):6647-6651.

    [9]

    SADYKOV F A,BARYKIN N P,ASLANYAN I R.Wear of copper and its alloys with submicrocrystalline structure[J].Wear,1999,225/226/227/228/229:649-655.

    [10]

    AKSOY M,KUZUCU V,TURHAN H.A note on the effect of phosphorus on the microstructure and mechanical properties of leaded-tin bronze[J].Journal of Materials Processing Technology,2002,124(1/2):113-119.

    [11] 唐红跃.铜镍与铜铅轴承材料的摩擦学性能研究[D].合肥:合肥工业大学,2016. TANG H Y.Study on tribological properties of copper-nickel and copper-lead bearing materials[D].Hefei:Hefei University of Technology,2016.
    [12]

    SORKHE Y A,AGHAJANI H,TAGHIZADEH TABRIZI A.Mechanical alloying and sintering of nanostructured TiO2 reinforced copper composite and its characterization[J].Materials & Design,2014,58:168-174.

    [13]

    ZHANG J,ALPAS A T.Wear regimes and transitions in Al2O3 particulate-reinforced aluminum alloys[J].Materials Science and Engineering:A,1993,161(2):273-284.

    [14]

    RAJEEV V R,DWIVEDI D K,JAIN S C.Effect of experimental parameters on reciprocating wear behavior of Al-Si-SiCp composites under dry condition[J].Tribology Online,2009,4(5):115-126.

    [15]

    CUI G J,BI Q L,YANG J,et al.Effect of normal loads on tribological properties of bronze-graphite composite under seawater condition[J].Tribology Transactions,2014,57(2):308-316.

    [16] 王怡然,高义民,李烨飞,等.石墨镀Sn调控对石墨/Cu复合材料组织及力学性能的影响[J].复合材料学报,2021,38(5):1497-1506.

    WANG Y R,GAO Y M,LI Y F,et al.Effect of Sn modification on microstructure and mechanical properties of graphite/Cu composites[J].Acta Materiae Compositae Sinica,2021,38(5):1497-1506.

    [17]

    YOSHIDA M,HOSHIYAMA Y,OMMYOJI J,et al.Microstructural evolution during the formation of Ti3AlC2[J].Materials Science and Engineering:B,2010,173(1/2/3):126-129.

    [18] 方双全,田郭涛,秦云晴,等.层状陶瓷Ti3AlC2的制备与腐蚀行为[J].材料热处理学报,2019,40(3):168-172.

    FANG S Q,TIAN G T,QIN Y Q,et al.Preparation and corrosion behavior of layered Ti3AlC2 ceramics[J].Transactions of Materials and Heat Treatment,2019,40(3):168-172.

    [19]

    ZHOU A G,WANG C A,HUANG Y.A possible mechanism on synthesis of Ti3AlC2[J].Materials Science and Engineering:A,2003,352(1/2):333-339.

    [20]

    TZENOV N V,BARSOUM M W.Synthesis and characterization of Ti3AlC2[J].Journal of the American Ceramic Society,2004,83(4):825-832.

    [21] 李小雷,周爱国,汪长安,等.自蔓延高温合成Ti3AlC2和Ti2AlC及其反应机理研究[J].硅酸盐学报,2002,30(3):407-410.

    LI X L,ZHOU A G,WANG C A,et al.Preparation of Ti3AlC2 and Ti2AlC by self-propagating high-temperature synthesis and study on mechanism of the reaction[J].Journal of the Chinese Ceramic Society,2002,30(3):407-410.

    [22]

    LIANG B Y,WANG M Z,SUN J F,et al.Preparation of Ti3AlC2 by mechanically activated sintering with Sn aids[J].International Journal of Refractory Metals and Hard Materials,2009,27(5):927-930.

    [23]

    YEH C L,SHEN Y G.Effects of using Al4C3 as a reactant on formation of Ti3AlC2 by combustion synthesis in SHS mode[J].Journal of Alloys and Compounds,2009,473(1/2):408-413.

    [24] 刘可心,王蕾,杨晨,等.Ti3SiC2/Cu复合材料的制备与摩擦磨损性能[J].复合材料学报,2020,37(11):2844-2852.

    LIU K X,WANG L,YANG C,et al.Preparation and tribological properties of Ti3SiC2/Cu composites[J].Acta Materiae Compositae Sinica,2020,37(11):2844-2852.

    [25] 王虎伟.Ti3AlC2/Cu基复合材料制备工艺和性能的研究[D].哈尔滨:哈尔滨工业大学,2011.

    WANG H W.Study on preparation technology and properties of Ti3AlC2/Cu matrix composites[D].Harbin:Harbin Institute of Technology,2011.

    [26]

    PENG C Q,WANG C A,SONG Y,et al.A novel simple method to stably synthesize Ti3AlC2 powder with high purity[J].Materials Science and Engineering:A,2006,428(1/2):54-58.

    [27]

    LI S B,ZHAI H X,BEI G P,et al.Synthesis and microstructure of Ti3AlC2 by mechanically activated sintering of elemental powders[J].Ceramics International,2007,33(2):169-173.

    [28]

    ZHANG Z L,ZHAI H X,ZHOU Y,et al.Preparation of composites from Al and Ti3AlC2 and its tribo-chemistry reactions against low carbon steel[J].Key Engineering Materials,2008,368/369/370/371/372:989-991.

    [29]

    PETCH N J.XXX.The lowering of fracture-stress due to surface adsorption[J].Philosophical Magazine,1956,1(4):331-337.

    [30]

    GRUNBERG L,JAMIESON D T,SCOTT D.Hydrogen penetration in water-accelerated fatigue of rolling surfaces[J].Philosophical Magazine,1963,8(93):1553-1568.

计量
  • 文章访问数:  8
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-14
  • 修回日期:  2023-08-15
  • 刊出日期:  2023-11-19

目录

    /

    返回文章
    返回