• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

316LN奥氏体不锈钢在含Cl-溶液中的腐蚀行为

饶思贤, 赵新生, 郭祥钦, 石亚飞, 张鹏

饶思贤, 赵新生, 郭祥钦, 石亚飞, 张鹏. 316LN奥氏体不锈钢在含Cl-溶液中的腐蚀行为[J]. 机械工程材料, 2023, 47(11): 43-50. DOI: 10.11973/jxgccl202311008
引用本文: 饶思贤, 赵新生, 郭祥钦, 石亚飞, 张鹏. 316LN奥氏体不锈钢在含Cl-溶液中的腐蚀行为[J]. 机械工程材料, 2023, 47(11): 43-50. DOI: 10.11973/jxgccl202311008
RAO Sixian, ZHAO Xinsheng, GUO Xiangqin, SHI Yafei, ZHANG Peng. Corrosion Behavior of 316LN Austenitic Stainless Steel in Cl- Containing Solution[J]. Materials and Mechanical Engineering, 2023, 47(11): 43-50. DOI: 10.11973/jxgccl202311008
Citation: RAO Sixian, ZHAO Xinsheng, GUO Xiangqin, SHI Yafei, ZHANG Peng. Corrosion Behavior of 316LN Austenitic Stainless Steel in Cl- Containing Solution[J]. Materials and Mechanical Engineering, 2023, 47(11): 43-50. DOI: 10.11973/jxgccl202311008

316LN奥氏体不锈钢在含Cl-溶液中的腐蚀行为

基金项目: 

国家高技术研究发展计划项目(2012AA040103);安徽省科技厅自然科学基金面上资助项目(1908085ME148);安徽省教育厅自然科学重大研究项目(KJ2016SD09)

详细信息
    作者简介:

    饶思贤(1978-),男,安徽马鞍山人,教授,博士

  • 中图分类号: TG172

Corrosion Behavior of 316LN Austenitic Stainless Steel in Cl- Containing Solution

  • 摘要: 采用慢应变速率拉伸法以及电化学方法,通过与316L奥氏体不锈钢进行对比,研究了316LN奥氏体不锈钢在不同温度(25,50℃)和不同腐蚀介质(质量分数为3%的NaCl溶液、质量分数为6%的FeCl3溶液)中的应力腐蚀开裂和电化学腐蚀行为。结果表明:316LN钢在含Cl-溶液中的应力腐蚀敏感性低于316L钢;316LN钢在NaCl溶液中发生钝化-击穿行为,而在FeCl3溶液中则呈现活性溶解特征,阻抗谱均为单一容抗弧特征,且温度越高,316LN钢的自腐蚀电流越大,容抗弧半径和电荷转移电阻越小。316LN钢的耐腐蚀性能优于316L钢。
    Abstract: The stress corrosion cracking and corrosion behavior of 316LN austenitic stainless steel were studied by slow strain rate tensile and electrochemical methods in different corrosive media (3wt% NaCl solution, 6wt% FeCl3 solution) at different temperatures (25, 50℃) through comparing with those of 316L austenitic stainless steel. The results show that in Cl- containing solution, the stress corrosion sensitivity of 316LN steel was lower than that of 316L steel. 316LN steel exhibited passivation-breakdown behavior in NaCl solution, while in FeCl3 solution, it presented the characteristics of active dissolution, and the impedance spectrum showed a single capacitive reactance arc in both. The higher the temperature, the larger the self-corrosion current, the smaller the arc radius and the charge transfer resistance of 316LN steel. 316LN steel showed better corrosion resistance than 316L steel.
  • [1]

    TOPPO A,PUJAR M G,SREEVIDYA N,et al.Pitting and stress corrosion cracking studies on AISI type 316N stainless steel weldments[J].Defence Technology,2018,14(3):226-237.

    [2] 郭舒,韩恩厚,王海涛,等.核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J].金属学报,2017,53(4):455-464.

    GUO S,HAN E H,WANG H T,et al.Life prediction for stress corrosion behavior of 316L stainless steel elbow of nuclear power plant[J].Acta Metallurgica Sinica,2017,53(4):455-464.

    [3]

    NISHIMURA R,ALYOUSIF O M.A new aspect on intergranular hydrogen embrittlement mechanism of solution annealed types 304,316 and 310 austenitic stainless steels[J].Corrosion Science,2009,51(9):1894-1900.

    [4]

    ALYOUSIF O M,NISHIMURA R.A hydrogen embrittlement mechanism for sensitized types 304,316 and 310 austenitic stainless steels in boiling saturated magnesium chloride solutions[J].Corrosion Science,2010,52(1):7-13.

    [5]

    WANG R X,HUANG Y L,JIANG T C,et al.Microstructure and mechanical properties of niobium and 316L stainless steel joints by TU1 oxygen free copper brazing[J].Rare Metal Materials and Engineering,2021,50(4):1166-1172.

    [6] 刘玉德,郭甲,石文天,等.激光粉末床成形316L不锈钢多孔结构力学性能研究[J].中国激光,2022,49(8):0802018.

    LIU Y D,GUO J,SHI W T,et al.Mechanical properties of 316L stainless steel porous structure formed by laser powder bed fusion[J].Chinese Journal of Lasers,2022,49(8):0802018.

    [7] 马广璐,崔新宇,沈艳芳,等.基体材料力学性能对316L不锈钢颗粒沉积行为的影响[J].金属学报,2016,52(12):1610-1618.

    MA G L,CUI X Y,SHEN Y F,et al.Influence of substrate mechanical properties on deposition behaviour of 316l stainless steel powder[J].Acta Metallurgica Sinica,2016,52(12):1610-1618.

    [8] 王育武,姜瑞景,赵景茂.316L和316LN不锈钢在高温高盐溶液中钝化膜的性能研究[J].北京化工大学学报(自然科学版),2017,44(5):72-79.

    WANG Y W,JIANG R J,ZHAO J M.The properties of passive films formed on 316L and 316LN stainless steel in high-temperature and high-salinity solution[J].Journal of Beijing University of Chemical Technology (Natural Science Edition),2017,44(5):72-79.

    [9]

    FU Y,WU X Q,HAN E H,et al.Effects of nitrogen on the passivation of nickel-free high nitrogen and manganese stainless steels in acidic chloride solutions[J].Electrochimica Acta,2009,54(16):4005-4014.

    [10]

    NEWMAN R C,SHAHRABI T.The effect of alloyed nitrogen or dissolved nitrate ions on the anodic behaviour of austenitic stainless steel in hydrochloric acid[J].Corrosion Science,1987,27(8):827-838.

    [11]

    LIM Y S,KIM J S,AHN S J,et al.The influences of microstructure and nitrogen alloying on pitting corrosion of type 316L and 20 wt.% Mn-substituted type 316L stainless steels[J].Corrosion Science,2001,43(1):53-68.

    [12]

    ANDREEV C,RASHEV T.Chromium-manganese stainless steels with nitrogen content up to 2.10wt%[J].Materials Science Forum,1999,318/319/320:255-260.

    [13]

    SPEIDEL M O.Nitrogen containing austenitic stainless steels[J].Materialwissenschaft und Werkstofftechnik,2006,37(10):875-880.

    [14]

    SPEIDEL M O.Properties and applications of high nitrogen steels[M].London:The Institute of Metals,1989:92-98.

    [15] 吴从风,王心禾,张海龙,等.合金元素对316LN不锈钢的力学性能和点蚀性能的影响[J].工程科学学报,2015,37(9):1157-1164.

    WU C F,WANG X H,ZHANG H L,et al.Effect of alloy elements on the mechanical properties and pitting corrosion resistance of 316LN austenitic stainless steel[J].Chinese Journal of Engineering,2015,37(9):1157-1164.

    [16]

    LI H B,JIANG Z H,YANG Y,et al.Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels[J].International Journal of Minerals,Metallurgy and Materials,2009,16(5):517-524.

    [17]

    CAI B P,LIU Y H,TIAN X J,et al.An experimental study of crevice corrosion behaviour of 316L stainless steel in artificial seawater[J].Corrosion Science,2010,52(10):3235-3242.

    [18]

    POONGUZHALI A,PUJAR M G,MUDALI U K.Effect of nitrogen and sensitization on the microstructure and pitting corrosion behavior of AISI type 316LN stainless steels[J].Journal of Materials Engineering and Performance,2013,22(4):1170-1178.

    [19] 王庆田,胡朝威,冷晓春,等.核反应堆堆内构件用304H奥氏体不锈钢敏化非腐蚀条件下的性能研究[J].热加工工艺,2018,47(22):101-105.

    WANG Q T,HU C W,LENG X C,et al.Property research of 304H austenite stainless steel used in RVI under sensitizing but no corrosion circumstance[J].Hot Working Technology,2018,47(22):101-105.

    [20]

    KAIN V,SAMANTARAY R,ACHARYA S,et al.Influence of low-temperature sensitization on stress corrosion cracking of 304LN stainless steels[M]//Environment-Induced Cracking of Materials.Amsterdam:Elsevier,2008:163-172.

    [21]

    BALI S C,KAIN V,RAJA V S.Effect of low-temperature sensitization on intergranular stress corrosion cracking behavior of austenitic stainless steels in simulated boiling water reactor environment[J].Corrosion,2009,65(11):726-740.

    [22] 朱若林,张利涛,王俭秋,等.核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J].中国腐蚀与防护学报,2018,38(1):54-61.

    ZHU R L,ZHANG L T,WANG J Q,et al.Stress corrosion crack propagation behavior of elbow pipe of nuclear grade 316LN stainless steel in high temperature high pressure water[J].Journal of Chinese Society for Corrosion and Protection,2018,38(1):54-61.

    [23] 万章,孔韦海,张强.S22053不锈钢在6%FeCl3溶液中的点蚀行为[J].腐蚀与防护,2019,40(1):18-22.

    WAN Z,KONG W H,ZHANG Q.Pitting behavior of S22053 stainless steel in 6% FeCl3 solution[J].Corrosion & Protection,2019,40(1):18-22.

    [24] 李光福,黄春波,李敬民,等.固溶态控氮不锈钢在高温水中的应力腐蚀破裂[J].核动力工程,2005,26(4):384-389.

    LI G F,HUANG C B,LI J M,et al.Stress corrosion cracking of solution-annealed nitrogen-containing austenitic stainless steels in high temperature water environments[J].Nuclear Power Engineering,2005,26(4):384-389.

    [25]

    NINGSHEN S,KAMACHI MUDALI U,MITTAL V K,et al.Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels[J].Corrosion Science,2007,49(2):481-496.

    [26]

    SATO N.Anodic breakdown of passive films on metals[J].Journal of the Electrochemical Society,1982,129(2):255-260.

    [27]

    PARK J O,MATSCH S,BÖHNI H.Effects of temperature and chloride concentration on pit initiation and early pit growth of stainless steel[J].Journal of the Electrochemical Society,2002,149(2):B34.

    [28] 刘传森,李壮壮,陈长风.不锈钢应力腐蚀开裂综述[J].表面技术,2020,49(3):1-13.

    LIU C S,LI Z Z,CHEN C F.Stress corrosion cracking of stainless steel[J].Surface Technology,2020,49(3):1-13.

    [29] 孙彦伟,陈吉,朴楠,等.离子渗氮对X80管线钢在碱性土壤模拟溶液中腐蚀行为的影响[J].表面技术,2015,44(2):93-98.

    SUN Y W,CHEN J,PIAO N,et al.The effect of plasma nitriding on the corrosion resistance of X80 pipeline steel in alkaline soil simulation solution[J].Surface Technology,2015,44(2):93-98.

    [30] 张志伟,刘素芬,李兆杰,等.304奥氏体不锈钢腐蚀失效原因分析及组织表征[J].金属热处理,2019,44(增刊1):96-102.

    ZHANG Z W,LIU S F,LI Z J,et al.Cause analysis and microstructure characterization of corrosion failure of 304 austenitic stainless steel[J].Heat Treatment of Metals,2019,44(S1):96-102.

    [31]

    LUO H,GAO S J,DONG C F,et al.Characterization of electrochemical and passive behaviour of alloy 59 in acid solution[J].Electrochimica Acta,2014,135:412-419.

    [32]

    LEE J B,YOON S I.Effect of nitrogen alloying on the semiconducting properties of passive films and metastable pitting susceptibility of 316L and 316LN stainless steels[J].Materials Chemistry and Physics,2010,122(1):194-199.

    [33]

    LYU J L,LUO H Y.Effect of temperature and chloride ion concentration on corrosion of passive films on nano/ultrafine grained stainless steels[J].Journal of Materials Engineering and Performance,2014,23(12):4223-4229.

计量
  • 文章访问数:  16
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 修回日期:  2023-08-08
  • 刊出日期:  2023-11-19

目录

    /

    返回文章
    返回