• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

车用双相高强钢的动态力学性能及本构模型的对比

徐莉, 郑崇嵩, 侯聚英, 吴昊, 张赛, 孟宪明, 高猛, 程从前

徐莉, 郑崇嵩, 侯聚英, 吴昊, 张赛, 孟宪明, 高猛, 程从前. 车用双相高强钢的动态力学性能及本构模型的对比[J]. 机械工程材料, 2023, 47(11): 74-80. DOI: 10.11973/jxgccl202311013
引用本文: 徐莉, 郑崇嵩, 侯聚英, 吴昊, 张赛, 孟宪明, 高猛, 程从前. 车用双相高强钢的动态力学性能及本构模型的对比[J]. 机械工程材料, 2023, 47(11): 74-80. DOI: 10.11973/jxgccl202311013
XU Li, ZHENG Chongsong, HOU Juying, WU Hao, ZHANG Sai, MENG Xianming, GAO Meng, CHENG Congqian. Dynamic Mechanical Properties and Constitutive Model Contrast ofDual-Phase High Strength Steel for Vehicles[J]. Materials and Mechanical Engineering, 2023, 47(11): 74-80. DOI: 10.11973/jxgccl202311013
Citation: XU Li, ZHENG Chongsong, HOU Juying, WU Hao, ZHANG Sai, MENG Xianming, GAO Meng, CHENG Congqian. Dynamic Mechanical Properties and Constitutive Model Contrast ofDual-Phase High Strength Steel for Vehicles[J]. Materials and Mechanical Engineering, 2023, 47(11): 74-80. DOI: 10.11973/jxgccl202311013

车用双相高强钢的动态力学性能及本构模型的对比

基金项目: 

科技部重点研发计划政府间合作项目(2019YFE0124100)

详细信息
    作者简介:

    徐莉(1984-),女,江西南昌人,高级工程师,硕士

    通讯作者:

    孟宪明高级工程师

  • 中图分类号: TG142.1

Dynamic Mechanical Properties and Constitutive Model Contrast ofDual-Phase High Strength Steel for Vehicles

  • 摘要: 通过不同应变速率(0.001~500 s-1)下的室温拉伸试验,研究了车用HC340/590DP、HC700/980DP双相高强钢的动态力学性能;分别采用Johnson-Cook模型、Swift-Hockett/Sherby模型,以及将Swift-Hockett/Sherby模型引入到Ludwik模型中的修正模型对2种钢的流动应力-应变曲线进行拟合,对比分析3种本构模型的拟合结果。结果表明:随着应变速率的增加,2种钢均表现出增强增塑现象;Johnson-Cook模型、Swift-Hockett/Sherby模型和修正Ludwik模型的拟合度平均值分别为0.950,0.999,0.997;修正Ludwik模型既具有各应变速率间应力耦合的特点,又保持了高拟合精度,可以准确描述车用双相高强钢的动态流变行为。
    Abstract: The dynamic mechanical properties of dual-phase high strength steels HC340/590DP and HC700/980DP for vehicles were studied by room temperature tensile tests at different strain rates (0.001-500 s-1). The flow stress-strain curves of the two steels were fitted by Johnson-Cook model, Swift Hockett/Sherby model and the modified model obtained by introducing Swift Hockett/Sherby model into Ludwik model, and the fitting results of the three constitutive models were compared and analyzed. The results show that with increasing strain rate, two steels both exhibited the phenomenon of strengthening and plasticizing. The average fit values of Johnson-Cook model, Swift Hockett/Sherby model, and modified Ludwik model were 0.950, 0.999, 0.997, respectively. The modified Ludwik model not only had the coupling characteristics of stress at each strain rate, but also maintained the high fitting accuracy; it could accurately describe the dynamic rheological behaviors of dual-phase high strength steels for vehicles.
  • [1] 李军,刘鑫,曹广祥,等.汽车车身高强度钢的应用发展及挑战[J].汽车工艺与材料,2021(8):1-6.

    LI J,LIU X,CAO G X,et al.Application,development and challenge of high strength steel for automobile body[J].Automobile Technology & Material,2021(8):1-6.

    [2] 康永林,邝霜,尹显东,等.汽车用双相钢板的开发与研究进展[J].汽车工艺与材料,2006(5):1-5.

    KANG Y L,KUANG S,YIN X D,et al.Research on progress and development of dual phase steel sheet for automobiles[J].Automobile Technology & Material,2006(5):1-5.

    [3] 张永青.双相高强钢炼钢工艺技术优化与应用[J].山东冶金,2021,43(2):5-6.

    ZHANG Y Q.Optimization and application of steel-making technology of dual-phase high strength steel[J].Shandong Metallurgy,2021,43(2):5-6.

    [4] 张伟,潘跃,林兴明,等.应变速率对不同强度双相钢动态力学特性的影响[J].塑性工程学报,2022,29(3):166-173.

    ZHANG W,PAN Y,LIN X M,et al.Effect of strain rate on dynamic mechanical characteristics of dual phase steel with different strengths[J].Journal of Plasticity Engineering,2022,29(3):166-173.

    [5] 王立新,徐树杰,黄家奇,等.不同应变率下6082铝合金力学性能表征[J].汽车实用技术,2018(22):175-178.

    WANG L X,XU S J,HUANG J Q,et al.Characterization of 6082 aluminium alloy at different strain rate[J].Automobile Applied Technology,2018(22):175-178.

    [6] 张伟,李春光,韩赟,等.高强双相钢动态力学本构模型对比分析[J].塑性工程学报,2021,28(6):75-82.

    ZHANG W,LI C G,HAN Y,et al.Comparative analysis of dynamic mechanical constitutive model of high strength dual phase steel[J].Journal of Plasticity Engineering,2021,28(6):75-82.

    [7] 张赛,孟庆振,谢书港,等.B250P1低合金钢的动态力学行为及其本构模型[J].理化检验-物理分册,2016,52(6):370-374.

    ZHANG S,MENG Q Z,XIE S G,et al.Dynamic mechanical behavior and constitutive model of B250P1 low alloy steel[J].Physical Testing and Chemical Analysis:Part A:Physical Testing,2016,52(6):370-374.

    [8] 邓云飞,张永,吴华鹏,等.6061-T651铝合金动态力学性能及J-C本构模型的修正[J].机械工程学报,2020,56(20):74-81.

    DENG Y F,ZHANG Y,WU H P,et al.Dynamic mechanical properties and modification of J-C constitutive model of 6061-T651 aluminum alloy[J].Journal of Mechanical Engineering,2020,56(20):74-81.

    [9]

    LI S C, KANG Y L, ZHU G M,et al.Effects of strain rates on mechanical properties and fracture mechanism of DP780 dual phase steel[J]. Journal of Materials and Performance, 2015, 24(6):2426-2434.

    [10]

    CHENG C Q,MENG X M,WU Y,et al.On dynamic mechanical properties of 3003 aluminum alloy based on generalized incremental stress-state-dependent damage model with modified Johnson-Cook equation[J].Journal of Materials Engineering and Performance,2023,32(2):451-461.

    [11]

    SHOKRY A.A modified Johnson-Cook model for flow behavior of alloy 800H at intermediate strain rates and high temperatures[J].Journal of Materials Engineering and Performance,2017,26(12):5723-5730.

    [12] 董丹阳,刘杨,王磊,等.应变速率对DP780钢动态拉伸变形行为的影响[J].金属学报,2013,49(2):159-166.

    DONG D Y,LIU Y,WANG L,et al.Effect of strain rate on dynamic deformation behavior of DP780 steel[J].Acta Metallurgica Sinica,2013,49(2):159-166.

    [13]

    DZIALLACH S,BLECK W,BLUMBACH M,et al.Sheet metal testing and flow curve determination under multiaxial conditions[J].Advanced Engineering Materials,2007,9(11):987-994.

    [14] 刁有凯.汽车高强钢非线性卸载及流动应力模型研究[D].大连:大连理工大学,2020.

    DIAO Y K.Study on nonlinear unloading and flow stress model of automobile high strength steel[D].Dalian:Dalian University of Technology,2020.

    [15] 李宏烨,庄新村,赵震.材料常用流动应力模型研究[J].模具技术,2009(5):1-4.

    LI H Y,ZHUANG X C,ZHAO Z.Research on material flow stress models in common use[J].Die and Mould Technology,2009(5):1-4.

    [16]

    ZHANG P,WANG Y Q,XIE Y N,et al.A study on the dynamic shock performance of 7055-T6I4 aluminum alloy based on experimental and simulation[J].Vacuum,2018,157:306-311.

    [17]

    ZHANG D N,SHANGGUAN Q Q,XIE C J,et al.A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy[J].Journal of Alloys and Compounds,2015,619:186-194.

    [18] 高宁,朱志武.5083铝合金宽应变率实验与基于损伤的本构模型研究[J].高压物理学报,2017,31(1):51-60.

    GAO N,ZHU Z W.Experimental study of wide strain rates and constitutive model based on damage of 5083 aluminum alloy[J].Chinese Journal of High Pressure Physics,2017,31(1):51-60.

    [19] 孟宪明,方锐,吴昊,等.B280VK钢动态力学性能及其本构模型研究[J].新技术新工艺,2019(3):19-23.

    MENG X M,FANG R,WU H,et al.Research on dynamic property and constitutive modeling for B280VK steel[J].New Technology & New Process,2019(3):19-23.

    [20] 赖兴华,尹斌.高应变率下高强钢的塑性力学行为及本构模型[J].汽车安全与节能学报,2017,8(2):157-163.

    LAI X H,YIN B.Plastic mechanical behavior and constitutive modeling of high-strength steel at high strain rates[J].Journal of Automotive Safety and Energy,2017,8(2):157-163.

    [21] 董伊康,齐建军,孙力,等.车用钢板材料硬化模型的适用性[J].机械工程材料,2020,44(10):81-86.

    DONG Y K,QI J J,SUN L,et al.Applicability of hardening models for automobile steel sheets[J].Materials for Mechanical Engineering,2020,44(10):81-86.

    [22] 彭露.基于经验建模校正的决定系数[D].南京:南京邮电大学,2021.

    PENG L. The coefficient of determination corrected bbased on empirical modeling[D].Nanjing:Nanjing University of Posts and Telecommunications,2021.

    [23] 董晓宇.裸露砒砂岩区土壤-基岩复合坡面水分运移过程及侵蚀特征研究[D]. 内蒙古:内蒙古农业大学,2022. DONG X Y.Study on water transfer process and erosion characteristics ofsoil-bedrock composite slope in bare Pisha sandstone area[D].Inner Mongolia:Inner Mongolia Agricultural University,2023.
计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-17
  • 修回日期:  2023-07-26
  • 刊出日期:  2023-11-19

目录

    /

    返回文章
    返回