• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

相场法模拟增材制造及焊接过程中显微组织的研究进展

王丽芳, 谢光耀, 朱刚贤

王丽芳, 谢光耀, 朱刚贤. 相场法模拟增材制造及焊接过程中显微组织的研究进展[J]. 机械工程材料, 2023, 47(11): 81-86,95. DOI: 10.11973/jxgccl202311014
引用本文: 王丽芳, 谢光耀, 朱刚贤. 相场法模拟增材制造及焊接过程中显微组织的研究进展[J]. 机械工程材料, 2023, 47(11): 81-86,95. DOI: 10.11973/jxgccl202311014
WANG Lifang, XIE Guangyao, ZHU Gangxian. Research Progress on Microstructure Simulation by Phase Field Method in Additive Manufacturing and Welding Process[J]. Materials and Mechanical Engineering, 2023, 47(11): 81-86,95. DOI: 10.11973/jxgccl202311014
Citation: WANG Lifang, XIE Guangyao, ZHU Gangxian. Research Progress on Microstructure Simulation by Phase Field Method in Additive Manufacturing and Welding Process[J]. Materials and Mechanical Engineering, 2023, 47(11): 81-86,95. DOI: 10.11973/jxgccl202311014

相场法模拟增材制造及焊接过程中显微组织的研究进展

基金项目: 

苏州市科技计划项目(SYC2022143);国家重点研发计划项目(2016YFB1100300)

详细信息
    作者简介:

    王丽芳(1979-),女,陕西渭南人,实验师,硕士

    通讯作者:

    谢光耀

  • 中图分类号: TG111.5

Research Progress on Microstructure Simulation by Phase Field Method in Additive Manufacturing and Welding Process

  • 摘要: 增材制造以及焊接过程都是多物理场耦合的复杂过程,难以采用试验方法直接观测熔池显微组织的演变过程。随着计算材料学和数值模型的快速发展,从数值模拟出发研究凝固过程中的显微组织演变成为可能。对比分析了几类常用的显微组织模拟方法,其中相场法在晶粒形貌模拟准确性上具有独特的优势。综述了相场法在增材制造及焊接领域模拟显微组织的应用现状,并对未来的研究方向进行了展望。
    Abstract: The processes of additive manufacturing and welding are both complex processes with multiple physical field coupling, and it is difficult to directly observe the evolution of the microstructure of the molten pool by experimental methods. With the rapid development of computational material science and numerical models, it is possible to study the microstructure evolution during solidification by numerical simulation. Several commonly used microstructure simulation methods are compared and analyzed, among which the phase field method has a unique advantage in the accuracy of grain morphology simulation. The application status of phase field method in the microstructure simulation in additive manufacturing and welding fields is reviewed, and the research direction in future is prospected.
  • [1] 朱忠良,赵凯,郭立杰,等.大型金属构件增材制造技术在航空航天制造中的应用及其发展趋势[J].电焊机,2020,50(1):1-14.

    ZHU Z L,ZHAO K,GUO L J,et al.Application and development trend of additive manufacturing technology of large-scale metal component in aerospace manufacturing[J].Electric Welding Machine,2020,50(1):1-14.

    [2]

    TEPYLO N,HUANG X A,PATNAIK P C.Laser-based additive manufacturing technologies for aerospace applications[J].Advanced Engineering Materials,2019,21(11):1900617.

    [3] 肖文甲.激光增材制造镍基高温合金枝晶生长的机理研究[D].长沙:湖南大学,2019. XIAO W J.Study on dendritic growth mechanism of nickel-based superalloy made by laser additive[D].Changsha:Hunan University,2019.
    [4]

    WANG C Y,BECKERMANN C.Prediction of columnar to equiaxed transition during diffusion-controlled dendritic alloy solidification[J].Metallurgical and Materials Transactions A,1994,25(5):1081-1093.

    [5] 刘芸.铝锂合金激光焊接熔池凝固过程微观组织建模与仿真研究[D].南京:南京航空航天大学,2018. LIU Y.Modeling and simulation of microstructure in solidification process of Al-Li alloy laser welding pool[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2018.
    [6] 黄超.基于CA-FE法TIG焊下TC4合金焊缝微观组织数值分析[D].西安:西安理工大学,2020. HUANG C.Numerical analysis of microstructure of TC4 alloy weld under TIG welding based on CA-FE method[D].Xi'an:Xi'an University of Technology,2020.
    [7] 陈满骄.铝/钢异种金属焊接接头界面形成机理研究[D].兰州:兰州理工大学,2016.

    CHEN M J.Study on interface formation mechanism of aluminum/steel dissimilar metal welded joints[D].Lanzhou:Lanzhou University of Technology,2016.

    [8] 任博.Stellite 6合金焊接熔池凝固行为的相场模拟[D].上海:上海交通大学,2020.

    REN B.Phase field simulation of solidification behavior of welding pool of Stellite 6 alloy[D].Shanghai:Shanghai Jiao Tong University,2020.

    [9]

    HOHENBERG P C,HALPERIN B I.Theory of dynamic critical phenomena[J].Reviews of Modern Physics,1977,49(3):435-479.

    [10]

    COLLINS J B,LEVINE H.Diffuse interface model of diffusion-limited crystal growth[J].Physical Review B,1985,31(9):6119-6122.

    [11]

    CAGINALP G,FIFE P C.Dynamics of layered interfaces arising from phase boundaries[J].SIAM Journal on Applied Mathematics,1988,48(3):506-518.

    [12]

    FIFE P C,GILL G S.The phase-field description of mushy zones[J].Physica D:Nonlinear Phenomena,1989,35(1/2):267-275.

    [13]

    KOBAYASHI R.Modeling and numerical simulations of dendritic crystal growth[J].Physica D:Nonlinear Phenomena,1993,63(3/4):410-423.

    [14]

    WHEELER A A,BOETTINGER W J,MCFADDEN G B.Phase-field model for isothermal phase transitions in binary alloys[J].Physical Review A,1992,45(10):7424-7439.

    [15]

    KIM S G,KIM W T,SUZUKI T. Phase-field model for binary alloys[J].Physical Review E,1999,60(6):7186-7197.

    [16] 张玉妥,李殿中,李依依,等.用相场方法模拟纯物质等轴枝晶生长[J].金属学报,2000,36(6):589-591.

    ZHANG Y T,LI D Z,LI Y Y,et al.Simulation of equiaxed dendritic growth of a pure material using phase field method[J].Acta Metallrugica Sinica,2000,36(6):589-591.

    [17] 于艳梅,杨根仓,赵达文,等.过冷熔体中枝晶生长的相场法数值模拟[J].物理学报,2001,50(12):2423-2428.

    YU Y M,YANG G C,ZHAO D W,et al.Numerical simulation of dendritic growth in undercooled melt using phase-field approach[J].Acta Physica Sinica,2001,50(12):2423-2428.

    [18] 朱昌盛,王智平,荆涛,等.二元合金非等温凝固相场法模拟[J].稀有金属材料与工程,2005,34(10):1565-1568.

    ZHU C S,WANG Z P,JING T,et al.Phase-field simulation of non-isothermal dendritic growth of binary alloy[J].Rare Metal Materials and Engineering,2005,34(10):1565-1568.

    [19]

    ECHEBARRIA B,FOLCH R,KARMA A,et al.Quantitative phase-field model of alloy solidification[J].Physical Review E,2004,70(6):061604.

    [20]

    KUNDIN J,RAMAZANI A,PRAHL U,et al.Microstructure evolution of binary and multicomponent manganese steels during selective laser melting:Phase-field modeling and experimental validation[J].Metallurgical and Materials Transactions A,2019,50(4):2022-2040.

    [21]

    XIAO W J,LI S M,WANG C S,et al.Multi-scale simulation of dendrite growth for direct energy deposition of nickel-based superalloys[J].Materials & Design,2019,164:107553.

    [22]

    GENG R W,DU J,WEI Z Y,et al.An adaptive-domain-growth method for phase field simulation of dendrite growth in arc preheated fused-coating additive manufacturing[J].Journal of Physics:Conference Series,2018,1063:012077.

    [23]

    WU L M,ZHANG J.Phase field simulation of dendritic solidification of Ti-6Al-4V during additive manufacturing process[J].JOM,2018,70(10):2392-2399.

    [24]

    WANG X,LIU P W,JI Y,et al.Investigation on microsegregation of IN718 alloy during additive manufacturing via integrated phase-field and finite-element modeling[J].Journal of Materials Engineering and Performance,2019,28(2):657-665.

    [25]

    GENG R W,DU J,WEI Z Y,et al.Multiscale modeling of microstructural evolution in fused-coating additive manufacturing[J].Journal of Materials Engineering and Performance,2019,28(10):6544-6553.

    [26]

    ZHANG Y,JUNG Y G,ZHANG J.Phase field modeling of microstructure evolution in selective laser melting-manufactured titanium alloy[M]//Multiscale Modeling of Additively Manufactured Metals.Amsterdam:Elsevier,2020:141-154.

    [27]

    CHU S,GUO C W,ZHANG T X,et al.Phase-field simulation of microstructure evolution in electron beam additive manufacturing[J].The European Physical Journal E,2020,43(6):35.

    [28]

    GENG S N,JIANG P,SHAO X Y,et al.Effects of back-diffusion on solidification cracking susceptibility of Al-Mg alloys during welding:A phase-field study[J].Acta Materialia,2018,160:85-96.

    [29]

    YU F Y,JI Y Z,WEI Y H,et al.Effect of the misorientation angle and anisotropy strength on the initial planar instability dynamics during solidification in a molten pool[J].International Journal of Heat and Mass Transfer,2019,130:204-214.

    [30]

    XIONG L D,WANG C M,WANG Z M,et al.The interaction between grains during columnar-to-equiaxed transition in laser welding:A phase-field study[J].Metals,2020,10(12):1647.

    [31]

    GENG S N,JIANG P,GUO L Y,et al.Multi-scale simulation of grain/sub-grain structure evolution during solidification in laser welding of aluminum alloys[J].International Journal of Heat and Mass Transfer,2020,149:119252.

    [32]

    XIONG L D,ZHU G L,MI G Y,et al.A phase-field simulation of columnar-to-equiaxed transition in the entire laser welding molten pool[J].Journal of Alloys and Compounds,2021,858:157669.

    [33]

    BAILEY N S,HONG K M,SHIN Y C.Comparative assessment of dendrite growth and microstructure predictions during laser welding of Al6061 via 2D and 3D phase field models[J].Computational Materials Science,2020,172:109291.

    [34]

    TAKAKI T,ROJAS R,SAKANE S,et al.Phase-field-lattice Boltzmann studies for dendritic growth with natural convection[J].Journal of Crystal Growth,2017,474:146-153.

    [35]

    CAO L C,LIU D H,JIANG P,et al.Multi-physics simulation of dendritic growth in magnetic field assisted solidification[J].International Journal of Heat and Mass Transfer,2019,144:118673.

计量
  • 文章访问数:  7
  • HTML全文浏览量:  1
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-18
  • 修回日期:  2023-10-06
  • 刊出日期:  2023-11-19

目录

    /

    返回文章
    返回