• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

选区激光熔化成形工艺对多孔TC4钛合金显微组织的影响

陈健, 傅高升, 陈鸿玲, 张晨, 朱陈成

陈健, 傅高升, 陈鸿玲, 张晨, 朱陈成. 选区激光熔化成形工艺对多孔TC4钛合金显微组织的影响[J]. 机械工程材料, 2023, 47(11): 96-103,110. DOI: 10.11973/jxgccl202311016
引用本文: 陈健, 傅高升, 陈鸿玲, 张晨, 朱陈成. 选区激光熔化成形工艺对多孔TC4钛合金显微组织的影响[J]. 机械工程材料, 2023, 47(11): 96-103,110. DOI: 10.11973/jxgccl202311016
CHEN Jian, FU Gaosheng, CHEN Hongling, ZHANG Chen, ZHU Chencheng. Influence of Selective Laser Melting Forming Process on Microstructure of Porous TC4 Titanium Alloy[J]. Materials and Mechanical Engineering, 2023, 47(11): 96-103,110. DOI: 10.11973/jxgccl202311016
Citation: CHEN Jian, FU Gaosheng, CHEN Hongling, ZHANG Chen, ZHU Chencheng. Influence of Selective Laser Melting Forming Process on Microstructure of Porous TC4 Titanium Alloy[J]. Materials and Mechanical Engineering, 2023, 47(11): 96-103,110. DOI: 10.11973/jxgccl202311016

选区激光熔化成形工艺对多孔TC4钛合金显微组织的影响

基金项目: 

福建省科技计划项目(产学研联合创新基金)(2020Y4018)

详细信息
    作者简介:

    陈健(1997-),男,贵州遵义人,硕士研究生

  • 中图分类号: TG146.23

Influence of Selective Laser Melting Forming Process on Microstructure of Porous TC4 Titanium Alloy

  • 摘要: 采用Rhino软件构建了泰森多边形不规则多孔结构,利用选区激光熔化(SLM)技术成形多孔TC4钛合金,研究了激光功率(180,200,220 W)、扫描速度(1 200,1 600,2 000 mm·s-1)、扫描间距(80,100,120 μm)对其显微组织的影响。结果表明:随着激光功率的增大、扫描速度的减小或扫描间距的增大,SLM成形多孔TC4钛合金实体部分的微观孔洞缺陷数量和尺寸减小,相对密度提高,扫描速度是影响缺陷生成的主要原因;在激光功率220 W、扫描速度1 200 mm·s-1、扫描间距120 μm条件下钛合金具有最少的微观孔洞缺陷,其相对密度可达99.2%。靠近多孔结构孔隙部分的截面存在等轴晶和平行于基板表面的柱状晶,而远离孔隙部分的组织主要由β柱状晶组成,柱状晶内部为与其长轴成±45°且平行排列的初生针状马氏体;随着激光功率的减小、扫描速度的增大或扫描间距的减小,柱状晶的宽度和初生马氏体的长度均减小,扫描间距对显微组织的影响更大。
    Abstract: An irregular porous structure of Voronoi polygon was constructed by Rhino software, and the porous TC4 titanium alloy was prepared by selective laser melting (SLM). The effects of laser power (180, 200, 220 W), scanning speed (1 200, 1 600, 2 000 mm·s-1) and scanning spacing (80, 100, 120 μm) on the alloy microstructure were investigated. The results show that with the increase of laser power, the decrease of scanning speed or the increase of scanning spacing, the number and size of micropore defects in solid part of SLM formed porous TC4 titanium alloy decreased, and the relative density increased; the scanning speed was the main reason affecting the formation of defects. Under laser power of 220 W, scanning speed of 1 200 mm·s-1 and scanning spacing of 120 μm, the titanium alloy had the fewest micropore defects with relative density of 99.2%. There were equiaxed crystals and columnar crystals parallel to the substrate plate surface in the section near the pores of the porous structure, while the microstructure far away from the pores was mainly composed of β columnar crystals, and inside the columnar crystals there was primary acicular martensite arranged in parallel at ±45° to its major axis. With the decrease of laser power, the increase of scanning speed or the decrease of scanning spacing, the width of β columnar crystal and the length of primary martensite decreased; the scanning spacing had a greater effect on the microstructure.
  • [1]

    AUFA A N, HASSAN M Z, ISMAIL Z. Recent advances in Ti-6Al-4V additively manufactured by selective laser melting for biomedical implants:Prospect development[J]. Journal of Alloys and Compounds, 2022, 896:163072.

    [2]

    KAUR M, SINGH K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications[J]. Materials Science and Engineering:C, 2019, 102:844-862.

    [3]

    SUNTHARAVEL MUTHAIAH V M, INDRAKUMAR S, SUWAS S, et al. Surface engineering of additively manufactured titanium alloys for enhanced clinical performance of biomedical implants:A review of recent developments[J]. Bioprinting, 2022, 25:e00180.

    [4] 李卿.激光选区熔化成形医用多孔Ti6Al4V(ELI)合金工艺及性能研究[D].广州:华南理工大学,2019. LI Q. Study on process and properties of medical porous Ti6Al4V(ELI) alloy by laser selective melting[D]. Guangzhou:South China University of Technology, 2019.
    [5]

    SING S L,AN J A,YEONG W Y,et al.Laser and electron-beam powder-bed additive manufacturing of metallic implants:A review on processes,materials and designs[J].Journal of Orthopaedic Research,2016,34(3):369-385.

    [6]

    GEETHA M, SINGH A K, ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants:A review[J]. Progress in Materials Science, 2009, 54(3):397-425.

    [7]

    LU J W, ZHUO L C. Additive manufacturing of titanium alloys via selective laser melting:Fabrication, microstructure, post-processing, performance and prospect[J]. International Journal of Refractory Metals and Hard Materials, 2023, 111:106110.

    [8]

    TSHEPHE T S, AKINWAMIDE S O, OLEVSKY E, et al. Additive manufacturing of titanium-based alloys:A review of methods, properties, challenges, and prospects[J]. Heliyon, 2022, 8(3):e09041.

    [9]

    WANG G J, SHEN L D, ZHAO J F, et al. Design and compressive behavior of controllable irregular porous scaffolds:Based on voronoi-tessellation and for additive manufacturing[J]. ACS Biomaterials Science & Engineering, 2018, 4(2):719-727.

    [10] 王琪,刘小娜,黄晟,等.不规则多孔结构钛合金人体植入物的制备和性能研究[J].钛工业进展,2021, 38(4):28-33.

    WANG Q, LIU X N, HUANG S, et al. Preparation and properties of titanium alloy human implants with irregular porous structure[J]. Titanium Industry Progress, 2021, 38(4):28-33.

    [11] 武力,黄伟,李学涛,等.空间泰森多边形骨支架黏附性及渗透率分析[J].中国组织工程研究,2022, 26(28):4472-4476.

    WU L, HUANG W, LI X T, et al. Analysis of adhesion and permeability of bone scaffold with Voronoi architecture[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(28):4472-4476.

    [12] 吴慧敏,罗志强,金胜然.激光功率和扫描速度对选区激光熔化成形TC4钛合金组织和性能的影响[J].机械工程材料, 2021, 45(9):51-57.

    WU H M, LUO Z Q, JIN S R. Effects of laser power and laser scanning speed on microstructure and property of TC4 titanium alloy formed by selective laser melting[J]. Materials for Mechanical Engineering, 2021, 45(9):51-57.

    [13] 田操,陈卓,刘邦涛,等.自制气雾化TC4粉末的电子束选区熔化成形工艺[J].黑龙江科技大学学报,2020,30(4):422-426.

    TIAN C, CHEN Z, LIU B T, et al. Electron beam selective melting forming process of self-made gas atomized TC4 powder[J]. Journal of Heilongjiang University of Science and Technology, 2020, 30(4):422-426.

    [14] 姚志富.3D打印扫描工艺与TC4合金拉伸性能之间关系的研究[D].哈尔滨:哈尔滨工业大学,2018. YAO Z F. Study on the relationship between 3D printing and scanning process and tensile properties of TC4 alloy[D]. Harbin:Harbin Institute of Technology, 2018.
    [15] 闫泰起,陈冰清,梁家誉,等.激光选区熔化TC4钛合金成形质量优化研究[J].激光与光电子学进展,2022, 59(17):1716006.

    YAN T Q, CHEN B Q, LIANG J Y, et al. Optimization of forming quality of TC4 titanium alloy by selective laser melting[J]. Laser & Optoelectronics Progress, 2022, 59(17):1716006.

    [16]

    LI S J, MURR L E, CHENG X Y, et al. Compression fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting[J]. Acta Materialia, 2012, 60(3):793-802.

    [17] 叶建华,李东煜,林佳,等.TC4钛合金负泊松比人工骨微结构的力学性能匹配研究[J].稀有金属材料与工程,2022, 51(12):4594-4601.

    YE J H, LI D Y, LIN J, et al. Study on mechanical properties matching of TC4 titanium alloy negative Poisson's ratio artificial bone microstructure[J]. Rare Metal Materials and Engineering, 2022, 51(12):4594-4601.

    [18] 曾寿金,王靖,何伟辉,等.基于SLM的梯度多孔牙种植体力学特性[J].精密成形工程,2023, 15(1):61-70.

    ZENG S J, WANG J, HE W H, et al. Mechanical properties of gradient porous dental implants based on SLM[J]. Journal of Netshape Forming Engineering, 2023, 15(1):61-70.

    [19] 李传生.基于选区激光熔化Ti6Al4V梯度多孔支架设计与力学性能研究[D].福州:福建工程学院,2022. LI C S. Design and mechanical properties of Ti6Al4V gradient porous scaffold based on selective laser melting[D]. Fuzhou:Fujian University of Technology, 2022.
    [20] 陈侠宇.四轴飞行器机身创成式设计及其SLM成形工艺研究[D].福州:福建工程学院,2021. CHEN X Y. Creative design of quadcopter fuselage and research on SLM forming process[D]. Fuzhou:Fujian University of Technology, 2021.
    [21] 张霜银.激光快速成形TC4钛合金的组织和力学性能研究[D].西安:西北工业大学,2006.

    ZHANG S Y.Study on microstructure and mechanical properties of TC4 titanium alloy by laser rapid forming[D].Xi'an:Northwestern Polytechnical University,2006.

    [22] 李伟,金头男,方晓英,等.激光扫描速度对选区激光熔化TC4钛合金组织和性能的影响[J].热加工工艺,2023,52(1):28-32.

    LI W,JIN T N,FANG X Y,et al.Effect of laser scanning speed on microstructure and properties of TC4 titanium alloy melted by selective laser[J].Hot Working Technology,2023,52(1):28-32.

    [23] 吴启锐. 选区激光熔化成形316L不锈钢多孔结构的力学性能及生物相容性研究[D]. 福州:福建工程学院, 2021.

    WU Q R. Study on mechanical properties and biocompatibility of porous 316L stainless steel formed by selective laser melting[D]. Fuzhou:Fujian University of Technology, 2021.

    [24]

    ZHU Y Y, TANG H B, LI Z, et al. Solidification behavior and grain morphology of laser additive manufacturing titanium alloys[J]. Journal of Alloys and Compounds, 2019, 777:712-716.

    [25]

    WANG T, ZHU Y Y, ZHANG S Q, et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing[J]. Journal of Alloys and Compounds, 2015, 632:505-513.

    [26]

    SIMONELLI M, TSE Y Y, TUCK C. The formation of α+β microstructure in as-fabricated selective laser melting of Ti-6Al-4V[J]. Journal of Materials Research, 2014, 29(17):2028-2035.

    [27]

    THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9):3303-3312.

    [28]

    HE J J, LI D S, JIANG W G, et al. The martensitic transformation and mechanical properties of Ti6Al4V prepared via selective laser melting[J]. Materials, 2019, 12(2):321.

    [29]

    KUMAR P, PRAKASH O, RAMAMURTY U. Micro-and meso-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V[J]. Acta Materialia, 2018, 154:246-260.

    [30]

    YANG J J, YU H C, YIN J, et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting[J]. Materials & Design, 2016, 108:308-318.

    [31] 易涛,成靖,赵仲哲,等.体能量密度对选区激光熔化钛合金表面质量及致密度的影响[J].钢铁钒钛,2022, 43(4):75-79.

    YI T, CHENG J, ZHAO Z Z, et al. Effect of bulk energy density on surface quality and density of titanium alloy melted by selective laser[J]. Iron Steel Vanadium Titanium, 2022, 43(4):75-79.

计量
  • 文章访问数:  7
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-28
  • 修回日期:  2023-10-08
  • 刊出日期:  2023-11-19

目录

    /

    返回文章
    返回