Effect of Carbonitriding on Contact Fatigue Life and Failure Mechanism of Martensite Steel Bearing Inner Ring
-
摘要: 对GCr15马氏体钢轴承内圈分别进行常规热处理和碳氮共渗+深冷+回火处理(简称碳氮共渗处理),通过对比研究了碳氮共渗对试验钢接触疲劳寿命及失效机理的影响。结果表明:碳氮共渗处理内圈试样中的碳化物比起常规热处理内圈试样更加均匀、弥散、细化,表面显微硬度和残余应力均显著提高;碳氮共渗处理内圈试样的额定寿命L10,特征寿命L63.2和中值寿命L50分别约为常规热处理内圈试样的5.3倍,6.7倍和6.6倍;常规热处理和碳氮共渗处理内圈试样的接触疲劳失效损伤机理均为剥落,碳氮共渗处理后的亚表面裂纹萌生位置更深,亚表面二次裂纹的萌生与主裂纹的扩展得到抑制,抗接触疲劳性能得到提升。Abstract: Conventional heat treatment and carbonitriding+subzero+tempering treatment (carbonitriding treatment for short) were carried out on GCr15 martensitic steel bearing inner ring, and the influence of carbonitriding on the contact fatigue life and failure mechanism of the test steel was studied comparatively. The results show that the carbides in carbonitriding treated inner ring sample were more uniform, more dispersed and finer than those by conventional heat treatment, and the surface microhardness and residual stress increased significantly. The rated life L10, characteristic life L63.2 and median life L50 of carbonitriding treated inner ring sample were about 5.3 times, 6.7 times and 6.6 times those by conventional heat treatment, respectively. The contact fatigue failure damage mechanism of both conventional heat treatment and carbonitriding treated inner ring samples was spalling. The initiation of subsurface cracks of carbonitriding sample was deeper, and the initiation of secondary cracks on subsurface and the expansion of main cracks were also inhibited; there by the resistance of contact fatigue was improved.
-
-
[1] BHADESHIA H K D H.Steels for bearings[J].Progress in Materials Science. 2012. 57(2):268-435.
[2] 杨晓蔚.滚动轴承产品技术发展的现状与方向[J].轴承. 2020(8):65-70. YANG X W.Current situation and direction for technology development of rolling bearing products[J].Bearing. 2020(8):65-70.
[3] CAO Z X. LIU T Q. YU F. et al.Carburization induced extra-long rolling contact fatigue life of high carbon bearing steel[J].International Journal of Fatigue. 2020. 131:105351.
[4] 黎国猛. 梁益龙. 范航京. 等.水射流喷丸预处理对42CrMo钢氮化后接触疲劳性能的影响[J].材料导报. 2019. 33(18):3107-3112. LI G M. LIANG Y L. FAN H J. et al.Effects of water jet shot peening pretreatment on contact fatigue properties of 42CrMo steel after plasma nitriding[J].Materials Reports. 2019. 33(18):3107-3112.
[5] SELÇUK B. IPEK R. KARAMIŞ M B.A study on friction and wear behaviour of carburized. carbonitrided and borided AISI 1020 and 5115 steels[J].Journal of Materials Processing Technology. 2003. 141(2):189-196.
[6] 蒋港辉. 李淑欣. 蒲吉斌. 等.马氏体轴承钢碳氮共渗滚动接触疲劳失效机理[J].中国表面工程. 2022. 35(2):12-23. JIANG G H. LI S X. PU J B. et al.Rolling contact fatigue failure mechanism of martensitic bearing steel after carbonitriding[J].China Surface Engineering. 2022. 35(2):12-23.
[7] SU Y S. LI S X. LU S Y. et al.Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue[J].International Journal of Fatigue. 2017. 105:160-168.
[8] ARAKERE N K.Gigacycle rolling contact fatigue of bearing steels:A review[J].International Journal of Fatigue. 2016. 93:238-249.
[9] 苏云帅.滚动接触疲劳亚表面白色蚀刻组织本质及裂纹扩展路径研究[D].宁波:宁波大学. 2021. SU Y S.Investigation of essence of subsurface white etching area and crack growth path under rolling contact fatigue[D].Ningbo:Ningbo University. 2021. [10] LAITHY E M. WANG L. HARVEY T J. et al.Further understanding of rolling contact fatigue in rolling element bearings:A review[J].Tribology International. 2019. 140:105849.
[11] 谷臣清. 罗启文. 卢正欣.航空发动机轴承钢高温碳氮共渗的渗层组织与性能[J].金属热处理学报. 1998. 19(1):26-30. GU C Q. LUO Q W. LU Z X.Microstructures and mechanical properties of the carbonitrided M50NiL steel[J].Transactions of Metal Heat Treatment. 1998. 19(1):26-30.
[12] WANG B. LIU B. GU J F. et al.Gaseous carbonitriding of high carbon chromium bearing steel:Correlation between composition. microstructure and stability[J].Surface and Coatings Technology. 2022. 438:128408.
[13] LIU B. WANG B. GU J F.Effect of ammonia addition on microstructure and wear performance of carbonitrided high carbon bearing steel AISI 52100[J].Surface and Coatings Technology. 2019. 361:112-118.
[14] RAJAN K. JOSHI V. GHOSH A.Effect of carbonitriding on endurance life of ball bearing produced from SAE 52100 bearing steels[J].Journal of Surface Engineered Materials and Advanced Technology. 2013. 3(3):172-177.
[15] 冈本纯三. 黄志强. 罗继伟. 球轴承的设计计算[M]. 北京:机械工业出版社. 2003: 75-78. OKAMOTO J. HUANG Z Q. LUO J W. Design calculations for ball bearings[M]. Beijing: China Machine Press. 2003: 75-78.
[16] 刘宏基. 孙俊杰. 江涛. 等.一种超高碳钢的滚动接触疲劳研究[J].金属学报. 2014. 50(12):1446-1452. LIU H J. SUN J J. JIANG T. et al.Rolling contact fatigue behavior of an ultrahigh carbon steel[J].Acta Metallurgica Sinica. 2014. 50(12):1446-1452.
[17] MURTHY D N P. XIE M. JIANG R. Weibull models[M]. Hoboken. NJ: John Wiley & Sons. Inc. 2004:121-129
[18] 王一博. 李淑欣. 舒建明. 等.增加回火工序对GCr15轴承钢套圈变形的影响[J].机械工程材料. 2022. 46(11):66-70. WANG Y B. LI S X. SHU J M. et al.Effect of adding tempering process on deformation of GCr15 bearing steel ring[J].Materials for Mechanical Engineering. 2022. 46(11):66-70.
[19] KIM S T. TADJIEV D. YANG H T.Fatigue life prediction under random loading conditions in 7475-T7351 aluminum alloy using the RMS model[J].International Journal of Damage Mechanics. 2006. 15(1):89-102.
[20] SONG J D. LUO S H. LIANG X Q. et al.Rolling contact fatigue and damage characteristic of AISI 9310 steel with pre-laser shock peening treatment[J].International Journal of Fatigue. 2022. 155:106588.
[21] 张强. 孙世清. 杨卯生.32Cr3MoVE渗氮轴承钢的高应力滚动接触疲劳性能[J].机械工程材料. 2019. 43(9):38-42. ZHANG Q. SUN S Q. YANG M S.High stress rolling contact fatigue properties of 32Cr3MoVE nitrided bearing steel[J].Materials for Mechanical Engineering. 2019. 43(9):38-42.
[22] CHEN Q. HAHN G T. RUBIN C A. et al.The influence of residual stresses on rolling contact mode II driving force in bearing raceways[J].Wear. 1988. 126(1):17-30.
[23] ZHAO P. HADFIELD M. WANG Y. et al.Subsurface propagation of partial ring cracks under rolling contact[J].Wear. 2006. 261(3/4):382-389.
[24] JOHNSON K L.Contact mechanics and the wear of metals[J].Wear. 1995. 190(2):162-170.
[25] LUNDBERG G. PALMGREN A.Dynamic capacity of rolling bearings[J].Journal of Applied Mechanics. 1949. 16(2):165-172.
[26] 罗庆洪. 赵振业. 贺自强. 等.表层超硬化M50NiL钢接触疲劳失效机理[J].航空材料学报. 2017. 37(6):34-40. LUO Q H. ZHAO Z Y. HE Z Q. et al.Failure mechanism of contact fatigue of surface super-hardened M50NiL steel[J].Journal of Aeronautical Materials. 2017. 37(6):34-40.
计量
- 文章访问数: 6
- HTML全文浏览量: 0
- PDF下载量: 5