• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

燃料与氧化剂用量比对溶液燃烧法制备尖晶石型高熵氧化物结构和储锂性能的影响

王之昕, 张惠, 李肖, 郭磊, 梁雨婷, 官仕卿, 万宇杰, 冒爱琴

王之昕, 张惠, 李肖, 郭磊, 梁雨婷, 官仕卿, 万宇杰, 冒爱琴. 燃料与氧化剂用量比对溶液燃烧法制备尖晶石型高熵氧化物结构和储锂性能的影响[J]. 机械工程材料, 2024, 48(4): 21-29. DOI: 10.11973/jxgccl202404004
引用本文: 王之昕, 张惠, 李肖, 郭磊, 梁雨婷, 官仕卿, 万宇杰, 冒爱琴. 燃料与氧化剂用量比对溶液燃烧法制备尖晶石型高熵氧化物结构和储锂性能的影响[J]. 机械工程材料, 2024, 48(4): 21-29. DOI: 10.11973/jxgccl202404004
WANG Zhixin, ZHANG Hui, LI Xiao, GUO Lei, LIANG Yuting, GUAN Shiqing, WAN Yujie, MAO Aiqin. Effect of Fuel to Oxidant Dosage Ratio on Structure and Lithium Storage Properties of Spinel High Entropy Oxides by Solution Combustion Synthesis[J]. Materials and Mechanical Engineering, 2024, 48(4): 21-29. DOI: 10.11973/jxgccl202404004
Citation: WANG Zhixin, ZHANG Hui, LI Xiao, GUO Lei, LIANG Yuting, GUAN Shiqing, WAN Yujie, MAO Aiqin. Effect of Fuel to Oxidant Dosage Ratio on Structure and Lithium Storage Properties of Spinel High Entropy Oxides by Solution Combustion Synthesis[J]. Materials and Mechanical Engineering, 2024, 48(4): 21-29. DOI: 10.11973/jxgccl202404004

燃料与氧化剂用量比对溶液燃烧法制备尖晶石型高熵氧化物结构和储锂性能的影响

基金项目: 

国网冀北电力有限公司项目 B70144220039

详细信息
    作者简介:

    王之昕(1990—),女,河北秦皇岛人,工程师,学士

    通讯作者:

    李肖

  • 中图分类号: TQ152

Effect of Fuel to Oxidant Dosage Ratio on Structure and Lithium Storage Properties of Spinel High Entropy Oxides by Solution Combustion Synthesis

  • 摘要:

    以金属硝酸盐为氧化剂、甘氨酸为燃料,采用溶液燃烧法在750 ℃下制备尖晶石型(K1/6 Co1/6 Cr1/6 Fe1/6 Mn1/6 Ni1/63O4高熵氧化物粉体,并将该粉体用作锂离子电池负极材料,研究了燃料与氧化剂的物质的量比(0.2,0.5,1.0,1.5)对产物结构和储锂性能的影响。结果表明:所制备的高熵氧化物化学成分均匀且具有介孔结构;随着燃料与氧化剂的物质的量比的增加,高熵氧化物的结晶度、晶格常数、晶胞体积、比表面积和孔体积均增大,晶粒尺寸先减小后增大,最可几孔径先减小后增大再减小;当燃料与氧化剂的物质的量比为0.5和1.0时,所制备的粉体具有相似的比表面积和类似的孔结构,但是前者具有更小的晶粒尺寸和最可几孔径。当燃料与氧化剂的物质的量比为0.5时,制备的电极在0.2 A·g-1小电流密度下循环100圈后放电比容量最高(1 196 mA·h·g-1),这与此时电极材料具有较小的晶粒尺寸和最可几孔径以及适中的结晶度有关;当燃料与氧化剂的物质的量比为1.0时,电极具有最优的倍率性能,在1.0 A·g-1大电流密度下循环400圈后的放电比容量高达1 133 mA·h·g-1,在3 A·g-1大电流密度下的比容量保持率仍高达59.4%,这主要与较大的晶胞体积有关。

    Abstract:

    Spinel (K1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)3O4 high entropy oxide powder was synthesized by solution combustion synthesis method by taking metal nitrate as oxidant and glycine as fuel at 750 ℃, and was used as anode materials for lithium ion battery. The effect of fuel to oxidant molar ratio on microstructure and lithium storage performance of the products were studied. The results show that the prepared high entropy oxides had uniform chemical composition and a mesoporous structure. With the increase of the molar ratio of fuel to oxidant, the crystallinity, lattice constant, cell volume, specific surface area and pore volume of the high entropy oxides increased, the grain size decreased first and then increased, and the most probable pore size decreased first and then increased and then decreased. When the molar ratio of fuel to oxidant was 0.5 and 1.0, the prepared powder had similar specific surface area and pore structure, but the former had smaller grain size and the most probable pore size. When the molar ratio of fuel to oxidant was 0.5, the prepared electrode had the highest specific discharge capacity (1 196 mA·h·g-1) after 100 cycles at a low current density of 0.2 A·g-1, which was related to the small grain size and the most possible pore size and the moderate crystallicity of the electrode material at this time. When the molar ratio of fuel to oxidant was 1.0, the electrode had the best rate performance. After cycling for 400 cycles at 1.0 A·g-1 high current density, the specific discharge capacity reached 1 133 mA·h·g-1, and the specific capacity retention remained 59.4% at 3 A·g-1 high current density, which was mainly related to the larger cell volume.

  • 氧化锆增韧氧化铝(zirconia toughened alumina,ZTA)陶瓷不仅具有氧化铝陶瓷高硬度、耐磨损、耐腐蚀的优点,同时还具备较高的韧性,被广泛应用于医疗(陶瓷髋关节)、航空航天、电子等各大领域[1]。陶瓷的制备工艺一般都包括粉料成型和高温烧结过程,其中成型工艺是连接陶瓷粉料与陶瓷烧结制品之间的桥梁,具有至关重要的作用。凝胶注模成型工艺是由OMATETE等[2-3]开发的一种陶瓷近净成型工艺,该工艺制备的陶瓷素坯结构均匀性好,强度高,高温烧结后产品的机械加工量少,加工成本低[4-5]。但是,凝胶注模成型素坯的可靠性较低,阻碍了该成型工艺的工业化应用。对于陶瓷而言,内部存在气孔缺陷是致命的,会严重影响陶瓷材料的力学性能和可靠性。凝胶注模成型时制备出低黏度高固相含量的陶瓷浆料是减少陶瓷内部气孔缺陷的关键所在。王琦等[6]采用高固相含量低黏度的氧化铝浆料进行凝胶注模成型,烧结后的陶瓷试样具有优异的力学性能。陶瓷浆料的流变性主要与固相含量、pH、分散剂添加量等有关[7-12],目前关于高固相含量低黏度ZTA陶瓷浆料制备及凝胶注模成型的研究较少。为此,作者配制了氧化锆质量分数分别为25.0%,27.5%,30.0%的氧化锆和氧化铝混合粉并制备成固相质量分数在45%~57%的ZTA陶瓷浆料,研究了浆料pH、分散剂聚丙烯酸铵含量对浆料流变性能以及凝胶注模成型并烧结所得ZTA陶瓷显微组织和力学性能的影响,以期为凝胶注模制备ZTA陶瓷的生产应用提供参考。

    试验原料:氧化铝粉末,平均粒径为0.38μm,纯度不低于99.99%,由山东煜鼎新材料有限公司提供;钇稳定氧化锆粉末,中位粒径约为0.5μm,纯度不低于99%,由广东东方锆业科技股份有限公司提供;聚丙烯酸铵(PAA-NH4),化学纯,由爱森絮凝剂有限公司提供;丙烯酰胺(AM)、N,N'-亚甲基双丙烯酰胺(MBAM)、过硫酸铵(APS)、N,N,N',N'-四甲基乙二胺(TEMED),均为化学纯,由上海国药集团化学试剂有限公司提供。

    将AM、MBAM添加到去离子水(三者质量比为0.1∶0.01∶1)中,充分搅拌溶解,其间添加不同质量分数(0.2%~0.4%)的分散剂PAA-NH4和pH调节剂(盐酸、氢氧化钠),得到不同pH(1~12)的预混液。按照氧化锆质量分数分别为25.0%,27.5%,30.0%称取钇稳定氧化锆粉末和氧化铝粉末,按照固相含量(体积分数)分别为45%,50%,55%,57%计算并加入预混液,置于XQM-4型立式行星球磨机中进行球磨,磨球为氮化硅球,球料质量比为1∶1,主轴转速为350 r·min-1,球磨时间为3 h,最终得到ZTA陶瓷浆料。

    采用Zetasizer Nano S90型Zeta电位测试仪测试浆料的Zeta电位。采用NDJ-5(8)S型旋转式数字显示黏度计测试浆料黏度。根据Zeta电位和黏度的大小确定较佳的分散剂加入量和浆料pH。在较佳分散剂添加量和浆料pH下制备氧化锆质量分数分别为25.0%,27.5%,30.0%,固相体积分数为45%~55%的ZTA陶瓷浆料各500 mL,采用ZKT-6020型真空除泡机除去浆料中的气泡,在浆料中加入1 mL引发剂APS和0.5 mL催化剂TEMED后,倒入模具,在烘箱中进行60 ℃×30 min的注模成型。采用MUCH-5420型湿式等静压机进行冷等静压除去陶瓷素坯中的残余气孔,将素坯置于SX-45-16型硅钼棒高温电炉中进行常压烧结,烧结制度见图1,常温冷却得到ZTA陶瓷。采用VEGA3 SBU型扫描电子显微镜(SEM)观察陶瓷微观形貌。根据GB/T 4740-1999,制取尺寸为3.0 mm×4.0 mm×36 mm的弯曲试样,采用WE-100型液压式万能试验机测试抗弯强度,下压速度为0.5 mm·min-1,跨距长度为30 mm。根据ASTM F2094/F2094M-18,采用FALCON 600型维氏硬度计测试断裂韧度。采用阿基米德法测试密度,并计算得到相对密度。

    图  1  ZTA陶瓷的烧结制度
    Figure  1.  Sintering system of ZTA ceramics

    Zeta电位的大小反映的是浆料的流变性能,其绝对值越大,浆料中颗粒间的静电排斥力越大,浆料的分散性越好,黏度越低,即浆料的稳定性越好[13-16]。由图2可见:当固相含量为55%、氧化锆质量分数为27.5%、分散剂质量分数为0.33%时,在酸性条件下ZTA陶瓷浆料的Zeta电位绝对值随pH的增大而减小,当pH约为7.2时Zeta电位降为0;在碱性条件下,Zeta电位绝对值随着pH的增大先增加后减小,当pH约为9时达到最大。对比可知,在强酸性条件下浆料的Zeta电位绝对值高于碱性条件下;然而,在试验过程中发现,添加PAA-NH4后再加入盐酸调节pH时,少量盐酸的加入对浆料pH影响小,其pH维持在7左右,过量时盐酸则会与氧化铝粉末反应生成盐溶液,影响浆料性能。综合以上因素认为,ZTA陶瓷浆料的pH取9最佳,此时浆料的Zeta电位绝对值较高,约为18 mV,浆料稳定,具有较好的流变性能。

    图  2  陶瓷浆料的Zeta电位随pH的变化曲线
    Figure  2.  Zeta potential vs pH value curve of ceramic slurry

    图3可见:当固相体积分数为55%、pH为9时,随着分散剂PAA-NH4添加量增加,不同氧化锆含量的陶瓷浆料的黏度均呈现先减小后增大的变化趋势,这与文献[17]结果相符;当氧化锆质量分数分别为25.0%,27.5%时,分散剂的最佳添加量(质量分数,下同)为0.30%~0.33%,此时陶瓷浆料的黏度最小,流变性能最好。PAA-NH4分散机制为静电-空间位阻双机制分散,当添加量较小时,分散剂无法完全包覆颗粒,导致颗粒之间的位阻作用以及静电斥力较小,颗粒分散不均匀,因此浆料黏度较大;添加适量时,分散剂在颗粒表面形成饱和吸附,使得颗粒分散均匀;当添加量过多时,颗粒表面电荷密度过高,使得颗粒双电子层厚度受到压缩,导致浆料黏度增大[18],并且由于分散剂为高分子药剂,过量时会在颗粒表面形成桥连,导致颗粒团聚[19]。此外,由图3还可以看出,氧化锆质量分数也会影响陶瓷浆料的黏度。这说明氧化铝与氧化锆颗粒表面性质存在一定的差异。

    图  3  不同氧化锆含量陶瓷浆料的黏度随分散剂添加量的变化曲线
    Figure  3.  Viscosity vs dispersant addition curves of ceramic slurries containing different amounts of zirconia

    图4可见:当固相含量为55%、氧化锆质量分数为27.5%、分散剂质量分数为0.33%时,随着pH增大,陶瓷浆料的黏度呈现先减小后增大的趋势,在pH为9时最小,为331 mPa·s,在pH大于10后迅速增大。当pH在7~12时,陶瓷浆料的黏度随pH的变化趋势与Zeta电位基本一致。随着pH增大,浆料中吸附在颗粒表面的氢氧根离子数量增多,颗粒表面的双电子层厚度增加,颗粒间排斥力增大,有利于颗粒分散;但当pH过高时电解质浓度过大,由于电负性相同使得颗粒表面的双电子层结构受到压缩,排斥力减小,颗粒易发生团聚导致黏度增大[20-22]

    图  4  陶瓷浆料的黏度随pH的变化曲线
    Figure  4.  Viscosity vs pH value curve of ceramic slurry

    图5可见:当氧化锆质量分数为27.5%、分散剂质量分数为0.33%、pH为9时,陶瓷浆料的黏度随固相含量增加而增大。当固相含量为57%时,陶瓷浆料黏度大于1 000 mPa·s,流动性较差,但仍可进行水基凝胶注模成型;当固相含量低于50%时,陶瓷浆料的黏度低于100 mPa·s,流动性非常好。根据Woodcock公式[23],当固相含量提高时,浆料中颗粒间的距离会减小;颗粒间距离的减小会导致其双电子层结构压缩,从而增大浆料的黏度[24]。此外,固相含量的减小会降低烧结后ZTA陶瓷的力学性能[25-26]。综合考虑上述因素,制备的ZTA陶瓷浆料最佳的固相含量在50%~57%。

    图  5  陶瓷浆料的黏度随固相含量的变化曲线
    Figure  5.  Viscosity vs solid phase content curve of ceramic slurry

    综上可知:当pH为9、分散剂的质量分数为0.3%时,ZTA陶瓷浆料的Zeta电位绝对值较高,黏度最小。因此,在该条件下制备氧化锆质量分数分别为25.0%,27.5%,30.0%的ZTA陶瓷并进行微观形貌观察和力学性能检测。

    图6可以看出:当氧化锆质量分数为25.0%,30.0%时,ZTA陶瓷中的亮白色氧化锆颗粒发生团聚,分散性较差,当氧化锆质量分数为27.5%时,氧化锆颗粒在氧化铝基体中分散均匀。因此,取氧化锆质量分数为27.5%的陶瓷进行性能分析。

    图  6  不同氧化锆质量分数ZTA陶瓷的SEM形貌(固相含量55%)
    Figure  6.  SEM morphology of ZTA ceramics containing different mass fractions of zirconia (solid phase content of 55%)

    表1可知,当氧化锆质量分数为27.5%时,固相含量不同的3组ZTA陶瓷试样的相对密度都达到了98%以上,抗弯强度在800 MPa以上,断裂韧度最高可达8.7 MPa·m1/2。相同工艺制备的单一氧化铝陶瓷的断裂韧度仅有5 MPa·m1/2,对比认为氧化锆颗粒分散在氧化铝基体中起到了良好的增韧作用[22]。当固相含量较高时,试样的力学性能和相对密度得到一定的提升,这是因为高固相含量在一定程度上使得试样中在冷等静压时未消除的闭气孔得到了清除。

    表  1  不同固相含量ZTA陶瓷的相对密度和力学性能
    Table  1.  Relative density and mechanical properties of ZTA ceramics with different solid phase content
    氧化锆质量分数/%固相含量/%是否进行冷等静压相对密度/%抗弯强度/MPa断裂韧度/(MPa·m1/2
    27.54599.858128.5
    5599.048038.7
    5599.878158.6
    下载: 导出CSV 
    | 显示表格

    (1)当pH在7~12时,氧化锆增韧氧化铝(ZTA)陶瓷浆料的Zeta电位和黏度均随pH的增大先减小后增加,且当pH达到9时Zeta电位绝对值达到最大,黏度最小,说明此时陶瓷浆料最为稳定。随着分散剂添加量增加,浆料黏度先减小后增大。随着固相含量增加,浆料黏度增大。

    (2)在pH为9、分散剂质量分数为0.3%条件下,制备的高固相含量(体积分数为45%~55%)ZTA陶瓷浆料具有良好流动性和较低黏度;将该条件下制备的浆料经水基凝胶注模成型并烧结后,当固相含量较高时,所得ZTA陶瓷的相对密度、抗弯强度和断裂韧度均较高。

  • 图  1   不同燃料与氧化剂的物质的量比下所制备粉体的XRD谱和相应的Rietveld全谱拟合谱

    Figure  1.   XRD patterns (a) and corresponding Rietveld refined XRD patterns (b-e) of prepared powders under various fuel to oxidant molar ratios

    图  2   不同燃料与氧化剂的物质的量比下所制备粉体的SEM形貌以及元素面扫描区域和结果

    Figure  2.   SEM images (a-d) and elemental surface mapping area (e) and results (f) of prepared powders under various fuel to oxidant molar ratios

    图  3   不同燃料与氧化剂的物质的量比下所制备粉体的N2吸附-脱附等温线和孔径分布

    Figure  3.   N2 adsorption-desorption isotherms and pore diameter distribution of prepared powders under various fuel to oxidant molar ratios

    图  4   不同电极的电化学性能

    Figure  4.   Electrochemical performance of different electrodes: (a) cycling performance and coulomb efficiency at current density of 0.2 A·g-1; (b) rate performance; (c) long cycling performance and coulomb efficiency at current density of 1 A·g-1

    图  5   HEO-0.5电极的CV曲线和恒电流充放电曲线

    Figure  5.   CV curves (a) and constant current discharge/charge profiles (b) of HEO-0.5 electrode

    图  6   不同电极在循环前和循环60圈时的EIS图谱以及在低频区ω-1/2Z′的关系曲线

    Figure  6.   EIS spectra (a, c, e, g) and plots of Z' vs ω-1/2 curves (b, d, f, h) in low-frequency region of different electrodes before and after 60 cycles: (a, b) HEO-0.2 electrode; (c, d) HEO-0.5 electrode; (e, f) HEO-1.0 electrode and (g, h) HEO-1.5 electrode

    表  1   不同燃料与氧化剂的物质的量比下所制备粉体的Rietveld全谱拟合的结构参数

    Table  1   Rietveld refined structural parameters of prepared powders under various fuel to oxidant molar ratios

    φ晶格常数/nm晶胞体积/nm3
    abc
    0.20.829 30.829 30.829 30.570 5
    0.50.829 50.829 50.829 50.570 9
    1.00.830 60.830 60.830 60.573 2
    1.50.831 60.831 60.831 60.575 2
    下载: 导出CSV

    表  2   不同燃料与氧化剂的物质的量比下所制备粉体的比表面积、孔体积、平均孔径和最可几孔径

    Table  2   Surface area, pore volume, average pore size and the most probable pore size of prepared powders under various fuel to oxidant molar ratios

    φ比表面积/(m2·g-1孔体积/(cm3·g-1平均孔径/nm最可几孔径/nm
    0.219.240.0316.403.01
    0.529.430.09813.302.76
    1.030.040.10513.923.30
    1.557.880.1369.422.31
    下载: 导出CSV
    电极编号RsRctDLi+/(10-20 cm2·s-1)
    循环前循环60圈时循环前循环60圈时循环前循环60圈时
    HEO-0.22.66.9296.0178.613.213.3
    HEO-0.53.710.4331.034.71.5181.0
    HEO-1.03.57.6217.166.11.8200.0
    HEO-1.53.060.6717.5122.12.2124.7
    下载: 导出CSV
  • [1] 王雄, 王睿, 康巧玲, 等. 锂离子电池用钴基氧化物的结构设计及本征活性调控的研究进展[J]. 无机化学学报, 2022, 38(9): 1673-1689.

    WANG X, WANG R, KANG Q L, et al. Research progress on structural design and intrinsic activity modulation of Co-based oxides for lithium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, 2022, 38(9): 1673-1689.

    [2] PATRA J, NGUYEN T X, TSAI C C, et al. Effects of elemental modulation on phase purity and electrochemical properties of Co-free high-entropy spinel oxide anodes for lithium-ion batteries[J]. Advanced Functional Materials, 2022, 32(17): 2110992.
    [3] NGUYEN T X, TSAI C C, PATRA J, et al. Co-free high entropy spinel oxide anode with controlled morphology and crystallinity for outstanding charge/discharge performance in lithium-ion batteries[J]. Chemical Engineering Journal, 2022, 430: 132658.
    [4] XIANG H M, XING Y, DAI F Z, et al. High-entropy ceramics: Present status, challenges, and a look forward[J]. Journal of Advanced Ceramics, 2021, 10(3): 385-441.
    [5] 项厚政, 权峰, 李文超, 等. 高熵氧化物的制备及应用研究进展[J]. 过程工程学报, 2020, 20(3): 245-253.

    XIANG H Z, QUAN F, LI W C, et al. Research progress in preparation and application of high-entropy oxides[J]. The Chinese Journal of Process Engineering, 2020, 20(3): 245-253.

    [6] ALBEDWAWI S H, ALJABERI A, HAIDEMENOPOULOS G N, et al. High entropy oxides-exploring a paradigm of promising catalysts: A review[J]. Materials & Design, 2021, 202: 109534.
    [7] VINNIK D A, TROFIMOV E A, ZHIVULIN V E, et al. High-entropy oxide phases with magnetoplumbite structure[J]. Ceramics International, 2019, 45(10): 12942-12948.
    [8] 王朋朋, 贾洋刚, 邵霞, 等. K+掺杂尖晶石型(Co0.2Cr0.2Fe0.2Mn0.2Ni0.23O4高熵氧化物负极材料制备与储锂性能研究[J]. 化工学报, 2022, 73(12): 5625-5637.

    WANG P P, JIA Y G, SHAO X, et al. Preparation and lithium storage performance of K+-doped spinel (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 high-entropy oxide anode materials[J]. CIESC Journal, 2022, 73(12): 5625-5637.

    [9] WANG Q S, SARKAR A, LI Z Y, et al. High entropy oxides as anode material for Li-ion battery applications: A practical approach[J]. Electrochemistry Communications, 2019, 100: 121-125.
    [10] XIANG H Z, XIE H X, CHEN Y X, et al. Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries[J]. Journal of Materials Science, 2021, 56(13): 8127-8142.
    [11] GAO P, CHEN Z, GONG Y X, et al. The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: Synthesis, advanced characterization, and fundamentals[J]. Advanced Energy Materials, 2020, 10(14): 1903780.
    [12] 宿新泰, 燕青芝, 葛昌纯. 低温燃烧合成超细陶瓷微粉的最新研究[J]. 化学进展, 2005, 17(3): 430-436.

    SU X T, YAN Q Z, GE C C. Recent development of low-temperature combustion synthesis of ultrafine ceramic power[J]. Progress in Chemistry, 2005, 17(3): 430-436.

    [13] MAO A Q, XIANG H Z, ZHANG Z G, et al. A new class of spinel high-entropy oxides with controllable magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2020, 497: 165884.
    [14] 方亮, 丁晓丽, 宋云, 等. 钙钛矿型LaCoO3电化学储锂的形貌调制效应[J]. 高等学校化学学报, 2019, 40(7): 1456-1463.

    FANG L, DING X L, SONG Y, et al. Effect of morphological tuning on electrochemical performance of perovskite LaCoO3 anodes[J]. Chemical Journal of Chinese Universities, 2019, 40(7): 1456-1463.

    [15] 甘延玲, 金头男, 聂光临, 等. 全谱拟合定量分析方法及其影响因素的研究[J]. 分析科学学报, 2016, 32(1): 89-94.

    GAN Y L, JIN T N, NIE G L, et al. Study on the effecting factors of quantitative analysis by Rietveld method[J]. Journal of Analytical Science, 2016, 32(1): 89-94.

    [16] 李亚楠锂离子电池用钛酸锂负极材料的结构调控与性能研究贵阳贵州大学2020李亚楠. 锂离子电池用钛酸锂负极材料的结构调控与性能研究[D]. 贵阳: 贵州大学, 2020.

    LI Y NStudy on structure control and properties of lithium titanate anode materials for lithium ion batteriesGuiyangGuizhou University2020LI Y N. Study on structure control and properties of lithium titanate anode materials for lithium ion batteries[D]. Guiyang: Guizhou University, 2020.

    [17] FANG D L, ZHAO Y C, WANG S S, et al. Highly efficient synthesis of nano-Si anode material for Li-ion batteries by a ball-milling assisted low-temperature aluminothermic reduction[J]. Electrochimica Acta, 2020, 330: 135346.
    [18] CHEN K T, CHEN H Y, TSAI C J. Mesoporous Sn/Mg doped ZnFe2O4 nanorods as anode with enhanced Li-ion storage properties[J]. Electrochimica Acta, 2019, 319: 577-586.
    [19] LI W, LIU J, ZHAO D Y. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials, 2016, 1(6): 16023.
    [20] 曹婷, 李东林, 王艳茹, 等. 三维有序大孔Ni-Co-Mn过渡金属氧化物锂离子电池负极材料制备及电化学性能[J]. 硅酸盐通报, 2019, 38(5): 1295-1301.

    CAO T, LI D L, WANG Y R, et al. Preparation and electrochemical performance of three-dimensionally ordered macroporous Ni-Co-Mn transition metal oxide as anode material for lithium-ion battery[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(5): 1295-1301.

    [21] HAN X Y, CUI Y P, LIU H W. Ce-doped Mn3O4 as high-performance anode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2020, 814: 152348.
    [22] TANG Z K, XUE Y F, TEOBALDI G, et al. The oxygen vacancy in Li-ion battery cathode materials[J]. Nanoscale Horizons, 2020, 5(11): 1453-1466.
    [23] LIU H, CAO Q, FU L J, et al. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries[J]. Electrochemistry Communications, 2006, 8(10): 1553-1557.
    [24] 贾洋刚, 邵霞, 程婕, 等. 赝电容控制型钙钛矿高熵氧化物La(Co0. 2Cr0. 2Fe0. 2Mn0. 2Ni0. 2)O3负极材料的制备及储锂性能[J]. 高等学校化学学报, 2022, 43(8): 163-173.

    JIA Y G, SHAO X, CHENG J, et al. Preparation and lithium storage performance of pseudocapacitance-controlled chalcogenide high-entropy oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 anode materials[J]. Chemical Journal of Chinese Universities, 2022, 43(8): 163-173.

图(6)  /  表(3)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  4
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-31
  • 修回日期:  2024-02-21
  • 刊出日期:  2024-04-19

目录

/

返回文章
返回