Effects of Mass Ratio of WC to Mo on Microstructure and Properties of TiC-based Cermets
-
摘要:
制备了WC和钼总质量分数为8%,WC与钼质量比分别为1∶4,2∶3,3∶2,4∶1的TiC基金属陶瓷,研究了WC与钼质量比对试样显微组织和性能的影响。结果表明:不同WC与钼质量比试样中的硬质相均为芯-环结构,芯相主要为TiC,环相为(Ti,M)C(M为Mo,W,V);当WC与钼质量比大于1时,黏结相中原位析出(Ti,M)C纳米颗粒;随着WC与钼质量比增加,试样的抗弯强度、断裂韧度和硬度均先增大后减小,密度增加,当WC与钼质量比为3∶2时,TiC基金属陶瓷的综合性能最佳,密度较高,硬度、抗弯强度、断裂韧度最大,分别为1 546 HV,1 200 MPa,6.61 MPa·m1/2;当WC与钼质量比小于1时,弯曲时试样中的硬质相发生穿晶断裂形成解理断面,黏结相发生撕裂变形形成粗糙断面;当WC与钼质量比大于1时,纳米颗粒从黏结相中拔出形成韧窝,WC与钼质量比越大,断口上的韧窝比例越少。
Abstract:TiC-based cermets were prepared with WC and Mo total mass fraction of 8% and mass ratios of WC to Mo of 1:4, 2:3, 3:2, 4:1, and the effects of mass ratio of WC to Mo on the microstructure and properties of the samples were studied. The results show that the hard phases in the samples with different mass ratio of WC to Mo all had a core-ring structure. The core phase was mainly TiC, and the ring phase were mainly (Ti, M)C(M=Mo,W,V). When the mass ratio of WC to Mo was greater than 1, (Ti,M)C nanoparticles were in-situ precipitated in the binder phase. With the increase of the mass ratio of WC to Mo, the bending strength, fracture toughness and hardness of the samples increased first and then decreased, and the density increased. When the mass ratio of WC to Mo was 3:2, the comprehensive performance of TiC-based ceramics was the best, and the density was high, and the hardness, bending strength and fracture toughness were the largest, which were 1 546 HV, 1 200 MPa, 6.61 MPa·m1/2, respectively. When the mass ratio of WC to Mo was less than 1, the hard phase of the sample transgranularly fractured to form a cleavage section, and the binder phase was torn and deformed to form a rough section during bending. When the mass ratio of WC to Mo was greater than 1, the nanoparticle was pulled out from the binder phase to form a dimple. The larger the mass ratio of WC to Mo, the smaller the proportion of dimples on the fracture.
-
Keywords:
- TiC-based cermet /
- in-situ precipitation /
- WC /
- Mo /
- property /
- microstructure
-
0. 引言
航空发动机涡轮叶片长时间在高温、高压环境下服役,其叶片性能会发生劣化,从而影响飞机的整体安全,因此研究发动机涡轮叶片性能变化对于飞机安全服役和减少维护成本具有重要意义[1-5]。通过对标准试样进行蠕变持久试验获取的最小蠕变速率和持久寿命是材料安全服役评估的重要参数。然而,一些设备由于形状受限等原因难以满足标准试样制备条件,只能制取小尺寸试样(小试样)。小试样可以保留服役构件的服役状态[6-7],主要分为两类:一类是将标准试样等比例或非等比例缩小的标准棒状小试样[8],目前已有比较完全的试验体系;另一类是非标准小试样,能针对特殊构件进行试验[9]。WOODFORD等[10]在某燃气轮机叶片不同区域制取了标准试样和小试样,发现试样尺寸会影响蠕变强度的测试结果。庄法坤等[7]研究发现,不同类型小试样的蠕变曲线差异较大。此外,传统的蠕变持久试验耗时较长,而高温下基于应力松弛测试获取的松弛蠕变性能与持久蠕变性能并无本质区别,因此可以采用短时应力松弛试验实现材料持久蠕变性能的低成本快速检测[11-14]。BOSE等[15]通过应力松弛测试数据预测了高温下1CrMoV钢的蠕变持久寿命,具有较好的预测效果。研究人员构建了可以将金属材料松弛蠕变速率转化为最小蠕变速率的模型,模拟得到的最小蠕变速率与实际最小速率相近,这验证了模型的准确性[16-18]。
定向凝固镍基合金是一种无横向晶界的柱状合金,具有耐高温、耐腐蚀和抗氧化等优点[19],在以其为主要材料的涡轮叶片上制取标准试样比较困难。为此,作者在热处理态定向凝固镍基合金棒材上制备了工字型小试样和棒状蠕变标准试样,并进行了不同温度下的应力松弛试验和不同应力下的蠕变持久试验,研究了标准试样和小试样的松弛蠕变和持久蠕变行为,建立了小试样松弛蠕变速率与标准试样持久寿命的关系,以期为将小试样松弛蠕变信息转化成标准试样持久蠕变信息提供参考。
1. 试样制备与试验方法
试验材料为热处理态定向凝固镍基合金棒材,由沈阳金属所提供,最终热处理工艺为1 220 ℃×2 h+1 120 ℃×2 h+850 ℃×24 h,采用XRF-1800型X射线荧光分析仪测试得到其化学成分(质量分数/%)为13.44Cr,9.67Co,4.85Ti,3.26Al,4.17W,1.63Mo,3.24Ta,余Ni。在试验合金上制取金相试样,经磨抛,用由5 mL浓盐酸(HCl质量分数为36%)+2 g CuSO4+23.5 mL H2O组成的溶液腐蚀5~10 s后,采用SU5000型热场式扫描电镜(SEM)观察显微组织。由图1可见:试验合金由共晶组织、MC型碳化物和γ'相组成,MC型碳化物主要为块状和条状,γ'相呈立方体状(边长约为0.2μm)均匀分布在基体上。经image pro plus软件统计可得,γ'相的面积分数和平均等效直径分别为51%,231μm。
根据GB/T 2039-2012并综合考虑实验室仪器、夹具以及涡轮叶片形状等因素,在试验合金上制取棒状蠕变标准试样和工字型小试样,尺寸如图2所示。采用RD-50型微控电子式通用蠕变持久试验机进行持久蠕变试验和应力松弛试验,使用TG115型光栅测微传感器测试蠕变应变。持久蠕变试验温度为900 ℃,温度误差范围在±1 ℃内,标准试样的试验应力分别为250,350,450 MPa,小试样的试验应力分别为250,350,400,450 MPa;应力松弛试验温度分别为800,850,900,980 ℃,由于应变超过弹性极限后对松弛蠕变规律变化影响较小[20],而小试样在试验过程中受到挂片型过渡夹具变形和试样尺寸形状的影响,应变为5%才到达弹性极限,因此将标准试样初始应变设为2%,小试样初始应变设为7%,应变速率均为8×10-5 s-1。采用SU5000型热场式扫描电镜观察持久蠕变和应力松弛试验后小试样和标准试样的显微组织。
在应力松弛试验加载阶段,应变随时间延长而增加,达到初始应变后随试验进行,试样初始应变中有一部分弹性应变转化为松弛蠕变应变,应力松弛试验过程中总应变保持不变,标准试样在拉应力方向的各类应变之和为恒值,即松弛试验初始总应变ε0为
(1) 式中:εe为弹性应变;εp为塑性应变,在松弛蠕变过程中不变;εSRT为松弛蠕变应变;σ为应力;E为弹性模量;C1为常数。
将式(1)对时间t进行微分得到应力松弛通用模型,即
(2) 式中:
为塑性应变速率,即松弛蠕变速率;
为应力变化速率。
2. 试验结果与讨论
2.1 持久蠕变行为
由图3可知:小试样和标准试样的持久蠕变曲线和持久蠕变速率曲线均相似,持久蠕变曲线单调递增直至试样最终断裂,持久蠕变速率曲线则呈“U”字型;随着应力增加,小试样和标准试样的持久寿命均缩短,持久蠕变速率均增大;相同应力下小试样的断裂应变和持久寿命均大于标准试样。
由图4可知:随着应力增加,小试样和标准试样的最小持久蠕变速率均增大,且两者接近,说明可以使用小试样代替标准试样进行持久蠕变试验以获取试验合金的最小持久蠕变速率;小试样和标准试样持久寿命不同,但两者Monkman-Grant关系曲线平行,持久寿命和最小持久蠕变速率在对数坐标轴下呈良好线性关系,拟合可得
(3) 式中:tr为持久寿命;
为最小持久蠕变速率;C2为常数。
2.2 松弛蠕变行为
由图5可见:小试样和标准试样的高温松弛蠕变曲线均单调递减,小试样的初始应力和残余应力均大于标准试样;随着试验温度升高,小试样和标准试样的初始应力和残余应力减小。
根据式(2)将松弛蠕变曲线转化为松弛蠕变速率-应力曲线。由图6(a)可知:小试样和标准试样的松弛蠕变速率接近,且均随应力增加或温度升高而增加。将不同温度下标准试样和小试样的松弛蠕变速率-应力曲线进行温度归一化,公式为
(4) 式中:PLM为温度归一化参数;T为温度。
由图6(b)可知,温度归一化后标准试样和小试样的松弛蠕变速率吻合性良好,分布在一条曲线上。通过进行多项式拟合,可得松弛主曲线方程为
(5) 由图7可知:900 ℃下持久蠕变和应力松弛试验后标准试样和小试样中的γ'相演变趋势一致,均沿垂直于应力方向聚集粗化,属于N型筏化;持久蠕变试验后标准试样和小试样的γ'相面积分数分别为39%,36%,均出现边缘圆化;应力松弛试验后标准试样和小试样的γ'相面积分数分别为47%,45%,纵横比的最小值分别为0.105,0.079。
2.3 松弛与持久蠕变的关系
为了建立松弛蠕变速率与最小持久蠕变速率的转化关系,将松弛蠕变速率归一化的参数记为PSRT,最小持久蠕变速率归一化的参数记为PCRT。由图8(a)可见,标准试样和小试样的PSRT与PCRT呈线性相关,其关系式为
(6) 式中:B为拟合参数。
将B代入式(5)可得
(7) 由于标准试样和小试样的松弛蠕变速率相近,可以相互代替,联立式(3)和式(7)可得标准试样持久寿命与小试样松弛蠕变速率的关系式为
(8) 由式(5)可得某一温度和应力下小试样的松弛蠕变速率,代入式(8)可进一步预测标准试样的持久寿命。将预测持久寿命作为横坐标,标准试样的实际持久寿命为纵坐标作图,如图8(b)所示,可见预测持久寿命和标准试样实际持久寿命接近,说明可以通过此方法解决传统持久蠕变试验方法由于试样数量、尺寸和试验时间在评估持久寿命时受限的问题。
3. 结论
(1)热处理态定向凝固镍基合金棒材小试样和标准试样的持久蠕变曲线均单调递增直至试样断裂,持久蠕变速率曲线则均呈“U”字型,两者的最小持久蠕变速率接近。
(2)小试样和标准试样的高温松弛蠕变曲线均单调递减,温度归一化后,两者的松弛蠕变速率吻合性好,分布在一条曲线上。
(3)持久蠕变和应力松弛试验后标准试样和小试样中γ'相的演变趋势一致,均沿垂直于应力方向聚集粗化,属于N型筏化。
(4)建立了松弛蠕变速率与最小持久蠕变速率的转化关系和标准试样持久寿命与小试样松弛蠕变速率的线性关系,利用小试样松弛蠕变速率预测的持久寿命和标准试样实际持久寿命接近。
-
表 1 不同WC与钼质量比下TiC基金属陶瓷的EDS分析结果
Table 1 EDS analysis results of TiC-based cermets with different mass ratios of WC to Mo
相 WC与钼质量比 质量分数/% Ti V Mo W Co Ni 黑芯相 1∶4 72.13 0.25 0.54 0.10 - - 2∶3 72.14 0.34 0.45 0.34 - - 3∶2 72.37 0.38 0.38 0.48 - - 4∶1 72.27 0.35 0.18 0.67 - - 灰环相 1∶4 67.61 3.56 4.88 2.17 0.12 0.37 2∶3 67.83 3.87 4.14 3.19 0.15 1.34 3∶2 64.12 3.75 3.81 4.22 0.03 0.86 4∶1 62.50 3.56 2.53 5.14 - 0.88 纳米颗粒 3∶2 45.07 0.59 5.39 14.56 1.93 12.36 4∶1 40.25 0.78 3.59 12.72 1.23 10.28 -
[1] 宋金鹏, 高吕明. 颗粒弥散和核-壳共存的 TiCN 基金属陶瓷的制备[J]. 复合材料学报, 2020, 37(10): 2552-2560. SONG J P, GAO L P. Fabrication of TiCN-based cermet with a coexisted microstructure of particle dispersion and core-rim structure[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2552-2560.
[2] DONG D Q, YANG W, XIONG H W, et al. Ti(C, N)-based cermets with fine grains and uniformly dispersed binders: Effect of the Ni-Co based binders[J]. Ceramics International, 2020, 46(5): 6300-6310. [3] CHANG F, QIU F, LI C L, et al. Effects of Cr and Mo elements on the microstructures and compressive properties of the in situ (TiCxNy-TiB2)/Ni cermets[J]. Progress in Natural Science: Materials International, 2019, 29(1): 20-27. [4] GAO Y, LUO B H, HE K J, et al. Mechanical properties and microstructure of WC-Fe-Ni-Co cemented carbides prepared by vacuum sintering[J]. Vacuum, 2017, 143: 271-282. [5] LV J, DU Y, LOU M, et al. Enhancing mechanical properties of Ti(C, N)-based cermets via preparation with (Ti, W)(C, N) multi-component powder[J]. International Journal of Refractory Metals and Hard Materials, 2022, 108: 105931. [6] 张晓明, 傅又红, 彭凌洲, 等. WC/Mo2C比例对金属陶瓷组织和性能的影响[J]. 硬质合金, 2018, 35(5): 324-329. ZHANG X M, FU Y H, PENG L Z, et al. Effect of WC/Mo2C ratio on microstructure and properties of cermets[J]. Cemented Carbide, 2018, 35(5): 324-329.
[7] ALVAREDO P, DIOS M, FERRARI B, et al. Understanding of wetting and solubility behavior of Fe binder on Ti(C, N) cermets[J]. Journal of Alloys and Compounds, 2019, 770: 17-25. [8] KWON H, MOON A, KIM J. Prediction of solid solution characteristics of MC (M=Zr, Nb, and Ta) in TiC lattice using phase stability diagrams[J]. Journal of the American Ceramic Society, 2019, 102(7): 4285-4295. [9] KANG X Y, LIN N, HE Y H, et al. Influence of ZrC addition on the microstructure, mechanical properties and oxidation resistance of Ti(C, N)-based cermets[J]. Ceramics International, 2018, 44(10): 11151-11159. [10] ZHANG W B, DU Y, PENG Y B. Effect of TaC and NbC addition on the microstructure and hardness in graded cemented carbides: Simulations and experiments[J]. Ceramics International, 2016, 42(1): 428-435. [11] 陈敏, 张雪峰, 肖玄. Mo添加剂对(Ti, V, Mo)C基金属陶瓷组织与性能的影响[J]. 钢铁钒钛, 2018, 39(5): 54-59. CHEN M, ZHANG X F, XIAO X. Effect of Mo addition on microstructure and properties of (Ti, V, Mo)C-based cermets[J]. Iron Steel Vanadium Titanium, 2018, 39(5): 54-59.
[12] ZHANG C, DU Y, ZHOU S Z, et al. Grain growth and hardness of TiC-based cermets: Experimental investigation and thermodynamic calculations[J]. Ceramics International, 2016, 42(16): 19289-19295. [13] XIONG H W, LI Z Y, GAN X P, et al. Morphology evolution of TiC-based cermets via different sintering schedules[J]. Ceramics International, 2017, 43(7): 5805-5812. [14] CHEN M, XIAO X, ZHANG X F, et al. Effect of Mo on morphology evolution and mechanical properties of TiC-based cermets[J]. JOM, 2020, 72(1): 385-392. [15] CHEN M, ZHANG X F, XIAO X, et al. Effect of in-situ precipitated white particles on mechanical properties of (Ti, V, W, Mo)C-based cermets[J]. JOM, 2021, 73(11): 3411-3418. [16] JIN Y Z, LIU Y, WANG Y K, et al. Study on phase evolution during reaction synthesis of ultrafine (Ti, W, Mo, V)(CN)-Ni composite powders[J]. Materials Chemistry and Physics, 2009, 118(1): 191-196. [17] ZHENG Q, LIM L C. Thermodynamics of TiC- and Ti(C, N)-based cermet processing prior to liquid phase sintering stage[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(5): 561-565. [18] WANG J, LIU Y, YE J W, et al. The fabrication of multi-core structure cermets based on (Ti, W, Ta)CN and TiCN solid-solution powders[J]. International Journal of Refractory Metals and Hard Materials, 2017, 64: 294-300. [19] ZHOU H J, HUANG M C, YANG H, et al. Densification kinetics and sintering behaviour of a Ti(C0.7N0.3)-WC-Mo2C-NbC-(Co, Ni) compact[J]. Journal of Alloys and Compounds, 2020, 843: 156072. [20] KAPTAY G. On the interfacial energy of coherent interfaces[J]. Acta Materialia, 2012, 60(19): 6804-6831. [21] Xu Q Z, AI X, Zhao J, et al. Effect of heating rate on the mechanical properties and microstructure of Ti(C,N)-based cermets[J]. Materials Science Engineering A, 2015, 628: 281-287. [22] SUN W C, ZHANG P, LI P, et al. Phase evolution, microstructure and properties of Y2O3-doped TiCN-based cermets[J]. Journal of Rare Earths, 2015, 33(8): 867-873.