Preparation and Properties of C22 Nickel-Based Alloy Laser Cladding Coating on 45 Steel Surface
-
摘要:
应用激光熔覆技术在45钢基体表面制备C22镍基合金熔覆层,研究了激光功率(1 250~2 000 W)、扫描速度(80,130 mm·s−1)对熔覆层质量的影响,并获得最优工艺参数;分析了最优工艺参数制备熔覆层的物相组成、微观结构和耐腐蚀性能。结果表明:不同工艺参数下制备的熔覆层与基体均形成良好的冶金结合。随着激光功率的增加或扫描速度的降低,熔覆层宽度以及热影响区深度均整体呈增大趋势;随激光功率增大,80 mm·s−1扫描速度下的熔覆层高度整体呈增大趋势,而130 mm·s−1扫描速度下则整体呈减小趋势;130 mm·s−1扫描速度下的熔覆层宽度和高度以及热影响区深度均较小。最优激光熔覆工艺参数为扫描速度80 mm·s−1、激光功率1 750 W,此时单道单层熔覆层的高度最大,熔覆层宽度和热影响区深度适宜。熔覆层由γ-Ni(Cr,Mo,Fe)枝晶和少量MoNi4金属间化合物组成,钼元素在枝晶间富集;与介质温度为50 ℃时相比,介质温度为70 ℃下的熔覆层自腐蚀电位较低,自腐蚀电流密度较高,钝化膜电阻较低,耐腐蚀性能较差,但极化曲线中仍然存在稳定的钝化区,说明在该温度下仍具有较好的保护作用。盐雾加速腐蚀144 h后,熔覆层表面形貌未发生改变,耐腐蚀性能良好。
Abstract:A C22 nickel-based alloy cladding layer was prepared on the surface of 45 steel for bolts by laser cladding technique. The effects of laser power (1 250‒2 000 W) and scanning speed (80,130 mm · s−1) on the quality of the cladding layer were investigated, and the optimal process parameters were obtained. The phase composition, microstructure, and corrosion resistance of the cladding layers prepared with optimal process parameters were analyzed. The results show that the metallurgical bonding was formed between the cladding layer prepared by different processes and the substrate. With the increase of laser power or the decrease of scanning speed, the width of cladding layer and the depth of heat affected zone increased basically. With increasing laser power, the height of cladding layer increased at the scanning speed of 80 mm · s−1, but decreased at the scanning speed of 130 mm · s−1. At the scanning speed of 130 mm · s−1, the width and height of cladding layer and the depth of heat affected zone were smaller. The optimal laser cladding parameters were the scanning speed of 80 mm · s−1 and the laser power of 1 750 W. Under this optimal process, the height of the single-pass single-layer cladding layer was the biggest, and the cladding layer width and the heat affected zone depth were suitable. The cladding layer was composed of γ-Ni (Cr, Mo, Fe) dendrites and a small amount of MoNi4 intermetallic compound and molybdenum was enriched in the interdendrite. Compared with the medium temperature of 50 ℃, the free corrosion potential of the cladding layer under the medium temperature of 70 ℃ was lower, the free corrosion current density was higher, the passivation film resistance was lower, and the corrosion resistance was poorer. However, there was still a stable passivation zone in the polarization curves, indicating that the protection was still excellent at 70 ℃. After accelerated corrosion by salt spray for 144 h , the surface morphology of the cladding layer did not change, indicating that the cladding layer had good corrosion resistance.
-
Keywords:
- laser cladding /
- nickel-based alloy /
- laser power /
- scanning speed /
- corrosion resistance
-
0. 引言
由摩擦磨损带来的能源消耗和材料破坏造成了巨大的经济损失,因此寻求耐磨减摩材料以及探索材料防护技术成为了研究焦点。渗氮、渗碳、喷丸、制备涂层、电镀等表面改性技术可以通过改善工件的表面状态来提升其摩擦学性能[1-2]。采用物理气相沉积技术[3-5]制备的TiN涂层能够提升刀具以及零部件表面的硬度和耐磨性,但是该涂层在650 ℃时会发生氧化形成疏松的TiO2而失效[6-7]。向TiN中掺杂铝原子形成(Ti,Al)N固溶体后,涂层发生氧化而失效的温度提升至800 ℃,此外掺杂铝还能形成固溶强化作用,进一步提升涂层的硬度和耐磨性。但是,TiAlN涂层的综合性能受掺杂铝含量的影响:当铝原子分数小于67%时,(Ti,Al)N固溶体以立方结构c-(Ti,Al)N形式存在,涂层具有优异的抗氧化性和耐磨性;当铝原子掺杂含量超过其在c-TiN晶格中的固溶极限(铝原子分数大于67%)时,会析出密排六方h-AlN相,涂层的综合性能急剧下降[8-10]。此外,由于高温合金等难加工材料高速干切削时的温度高于1 000 ℃,切削刀具表面TiAlN涂层已不能满足需求[11-12]。综上,有必要开展TiAlN涂层改性研究,进一步提高其性能以满足应用要求。为此,研究人员掺杂第4种元素(银[13]、钒[14]、钼[15]、硅[16-19]、碳[20]、铬[21-22])制备了四元TiAlXN涂层,其中硅、铬元素掺杂分别因可形成具有优异性能的(Ti,Al)N/a-SiNx(a代表非晶)复合结构以及可有效提高涂层硬度和抗氧化性而得到广泛应用。
为了进一步完善TiAlN基涂层的研究体系,拓宽其应用,作者以Ti0.5Al0.4Cr0.1、Ti0.5Al0.4Si0.1为靶材,采用电弧离子镀技术制备了掺杂相同含量硅和铬的TiAlSiN涂层和TiAlCrN涂层,研究了掺硅或铬涂层的微观结构、力学性能和摩擦学性能,并与TiAlN涂层进行对比。
1. 试样制备与试验方法
试验用靶材为纯度99.99%的Ti0.5Al0.4Cr0.1靶、Ti0.5Al0.4Si0.1靶、Ti0.5Al0.5靶、钛靶,均为市售,基体材料为单晶硅片(厚度0.5 mm)和316L不锈钢(尺寸25 mm×25 mm×3 mm)。利用Oerlikon Balzers公司RCS沉积系统采用电弧离子镀技术在基体上制备TiAlN、TiAlSiN以及TiAlCrN涂层。其中:316L不锈钢基体上的涂层用于硬度、结合强度以及摩擦学性能测试,单晶硅片基体上的涂层用于表面、截面形貌观察和微观结构分析。沉积前,将基体依次置于丙酮、无水乙醇中超声振荡15 min,去离子水清洗5 min后吹干,然后固定在转炉架上,再置于镀膜腔室内自转。镀膜腔室抽真空至1×10−3 Pa,将基体加热到450 ℃,通入流量为200 cm3·s−1、纯度为99.99%的氩气,利用钛靶在−700 V偏压下刻蚀基体10 min,去除基体表面的氧化皮,同时在基体表面形成伪扩散层以提高涂层在基体上的附着强度;关闭氩气,通入流量为200 cm3·s−1、纯度为99.99%的氮气,在工作电流为120 A下利用钛靶沉积TiN打底层,基体偏压为−100 V,再在120 A工作电流下利用Ti0.5Al0.5靶在TiN层上沉积TiAlN过渡层,以缓和由TiN打底层和表层之间的热膨胀系数差过大带来的内应力;最后,在Ti0.5Al0.4Si0.1靶、Ti0.5Al0.4Cr0.1靶中接入160 A电流,分别沉积TiAlSiN涂层和TiAlCrN涂层。对比涂层为采用Ti0.5Al0.5靶在160 A工作电流下沉积的TiAlN涂层。由于Ti0.5Al0.4Si0.1靶和Ti0.5Al0.4Cr0.1靶中硅、铬原子分数分别为10%,近似认为TiAlN涂层中的元素掺杂含量相同。
采用FEI inspect f50型场发射扫描电镜(FE-SEM)观察涂层的表面、截面形貌,选用FE-SEM自带的能谱仪(EDS)对涂层的微区成分进行分析。使用D/max 2200PC型X射线衍射仪(XRD)分析涂层的物相组成,选用铜靶,工作电流为40 mA,工作电压为40 kV,扫描速率为4 (°)·min−1,扫描范围为20°~70°。采用ESCALAB 250Xi型X射线光电子能谱仪(XPS)测试元素化学键合状态,激发源采用铝Kα射线,工作电压为12.5 kV,使用284.8 eV的碳峰(C1s)进行核电矫正。采用Hysitron TI-950型纳米压痕仪进行纳米压痕试验以获得涂层的纳米硬度和弹性模量,选用连续刚度压入模式,载荷为15 mN,压入深度不超过涂层厚度的1/10。采用WS-2005型划痕仪测试涂层的结合力,加载速率为20 N·min−1,最大载荷为100 N,划痕长度为4 mm;采用曲率法根据Stoney公式计算内应力[23]。使用UMT-3型摩擦磨损试验机测试涂层在大气环境中的摩擦学性能,摩擦方式为球-盘式,选用直径为9.5 mm的钢球作为对磨件,试验载荷为6 N,转速为200 r·min−1,磨斑直径为10 mm,磨损时间为10 min。采用白光干涉仪测涂层的磨痕尺寸,计算磨损率,具体公式如下:
(1) 式中:W为磨损率;V为磨损体积;F为法向载荷;S为滑动距离。
2. 试验结果与讨论
2.1 表面与截面微观形貌
由图1可见:不同涂层表面都有不规则的液滴、针孔特征,液滴是靶材喷溅所致,针孔是液滴周边的涂层竞相生长或者阴影效应所致,TiAlN涂层和TiAlCrN涂层中液滴和针孔的尺寸大于TiAlSiN涂层;不同涂层均结构致密,与基体之间结合紧密,无明显微裂纹,厚度均为3 μm左右;涂层晶粒均呈柱状晶生长,掺硅或铬后涂层的晶粒小于TiAlN涂层,且掺硅涂层的晶粒最小。硅、铬原子的加入增加了涂层生长过程中的异质核,使得涂层晶粒尺寸降低,而硅元素在立方TiN(c-TiN)晶格中的固溶度较铬元素低,所以TiAlSiN涂层具有更小的晶粒尺寸[24]。此外,a-SiNx与TiN之间较高的混合焓,会驱使TiAlSiN涂层在生长过程中发生相分离,形成特殊的纳米复合(Ti,Al)N/a-SiNx结构,而a-SiNx相会阻碍晶粒生长,也会使得TiAlSiN涂层晶粒细化[25]。
2.2 物相组成和微观结构
由表1可见:各涂层的氮平均原子分数均为50%左右。TiAlN涂层中钛与铝的原子比为55∶45,高于靶材中的50∶50;TiAlSiN涂层中钛、铝、硅的原子比为52∶40∶8,与靶材成分相比钛元素含量上升,硅元素含量下降;TiAlCrN涂层中钛、铝、铬的原子比为51∶37∶12,钛、铬元素含量较靶材上升,铝元素含量下降。上述现象出现的原因可归结为2个方面:一方面,铝、硅原子半径较小,在沉积过程中散射损失较大;另一方面,吉布斯自由能低的元素会优先形成氮化物被蒸发[26]。二者的共同作用,导致了铝、铬、硅含量的变化。
表 1 不同涂层的微区EDS分析结果Table 1. Micro-area EDS analysis results of different coatings涂层 原子分数/% Ti Al Si Cr N TiAlN 27.36 22.47 50.17 TiAlSiN 25.35 19.36 4.05 51.24 TiAlCrN 25.32 18.33 5.68 50.67 由图2可以看出:TiAlN涂层的XRD谱中出现了3个衍射峰,其衍射峰位置对比标准c-TiN(JCPDF No. 38-1420)衍射峰向大角度方向偏移,这是原子半径较小的铝原子固溶到c-TiN晶格中形成(Ti,Al)N所致[27-28];TiAlSiN和TiAlCrN涂层的XRD谱与TiAlN涂层相近,未观察到a-SiNx和CrN相,说明硅原子和铬原子以固溶或者非晶形式存在;TiAlSiN和TiAlCrN涂层的衍射峰强度均低于TiAlN涂层,衍射峰半高宽均大于TiAlN涂层,其中TiAlSiN涂层的衍射峰强度最低,半高宽最宽。衍射峰强度越低,半高宽越宽,晶粒尺寸越小[29]。可知,TiAlSiN涂层的晶粒尺寸最小,这与SEM截面形貌观察的结果一致。不同涂层均呈现较强的(200)面择优取向,这与涂层生长过程中的表面能和应变能有关[30]。
由图3可以看出:3种涂层的Ti2p谱由2个不对称的峰组成,分别对应Ti2p1/2和Ti2p3/2,通过分峰拟合后可以分为结合能位于455.86 eV和461.50 eV的峰以及457.76 eV和463.19 eV的峰,分别对应TiN以及TiN的卫星峰(TiN-sat)[31],这说明涂层中的钛元素以TiN形式存在;Al2p谱均由单峰组成,位于74.12 eV结合能处,该峰对应AlN[32];N1s谱中均观察到位于397.67 eV和396.82 eV结合能处的TiN和AlN峰,并且TiAlSiN涂层和TiAlCrN涂层还分别观察到了位于398.76 eV结合能处的Si3N4峰[33]和位于397.11 eV结合能处的CrN峰[34]。TiAlSiN涂层的Si2p谱观察到位于100.84 eV结合能处的Si3N4峰[35],说明TiAlSiN涂层中硅元素主要以非晶Si3N4存在,这与XRD结果相符合。TiAlCrN涂层的Cr2p谱由位于575.91,585.25,577.72,587.25 eV结合能处的峰组成,分别对应CrN以及其卫星峰(CrN-sat)[36]。
2.3 力学性能
TiAlN涂层的硬度为(33.244±3.125)GPa,在硅、铬掺杂产生的固溶强化以及晶粒细化的Hall-Petch效应下TiAlSiN涂层和TiAlCrN涂层的硬度均明显升高,分别达到(41.216±3.874)GPa和(36.713±3.321)GPa。此外,TiAlSiN涂层因SiNx和(Ti,Al)N较高的混合焓而形成特殊的非晶SiNx相镶嵌(Ti,Al)N纳米晶结构,非晶相与纳米晶之间的共格效应会进一步提升其硬度[37]。TiAlN涂层、TiAlSiN涂层、TiAlCrN涂层的弹性模量分别为(316.610±26.423),(452.923±35.265),(378.485±28.386)GPa。硬度与弹性模量的比值H/E可用于评判材料的抗弹性变形能力,H3/E2则用于评判材料的抗塑性变形程度。H/E和H3/E2数值越大,涂层的韧性越高。TiAlN涂层、TiAlSiN涂层、TiAlCrN涂层的H/E分别为0.105,0.091,0.097,H3/E2分别为0.367,0.341,0.345。可见,TiAlN涂层具有最高的H/E值和H3/E2值,说明其韧性最好,而TiAlSiN涂层的韧性最差。TiAlN涂层、TiAlSiN涂层、TiAlCrN涂层的结合力分别为81,74,78 N,内应力分别为−2.68,−3.94,−3.17 GPa。说明硅、铬元素掺杂在提升TiAlN涂层硬度的同时也提高了内应力。TiAlCrN涂层和TiAlSiN涂层内应力的提升可以归因为晶粒细化引起的晶界缺陷增加以及固溶强化导致的晶格畸变。
2.4 摩擦学性能
由图4可以看出,3种涂层在摩擦磨损初期的摩擦因数较高,随后逐渐降低至趋于稳定。TiAlN涂层、TiAlSiN涂层和TiAlCrN涂层的稳定摩擦因数分别约为0.35,0.25,0.27,可见硅元素和铬元素的掺杂均能降低TiAlN涂层的摩擦因数。这可以归因于硅元素和铬元素掺杂引起涂层的硬度提高;涂层的硬度越高,其与摩擦副之间的弹性接触面积越小,摩擦因数越低[38-39]。TiAlSiN涂层摩擦因数曲线中有较多尖锐的小峰,说明其在摩擦过程中出现了不平稳的磨损。TiAlN涂层、TiAlSiN涂层和TiAlCrN涂层的磨损率分别为3.5×10−5,1.8×10−5,1.4×10−5 mm3·N−1·m−1。TiAlSiN涂层比TiAlCrN涂层具有更低的摩擦因数,但是其磨损率却相对较大,这与TiAlSiN涂层内应力较大有关。
3. 结论
(1)TiAlN涂层以及掺杂硅或铬的TiAlSiN涂层或TiAlCrN涂层均结构致密,与基体结合良好,呈柱状晶生长,呈现较强的(200)晶面择优取向。3种涂层均主要由TiN和AlN相组成,而TiAlSiN涂层还存在Si3N4非晶相。掺杂硅或铬后涂层晶粒尺寸减小,掺杂硅后晶粒尺寸减小幅度更大。
(2)掺杂硅或铬后涂层的硬度和内应力增大,且掺杂硅的增大幅度更大;掺杂硅或铬后涂层的硬度与弹性模量的比值和结合力降低,掺杂硅的降低幅度更大,韧性最差。
(3)硅元素和铬元素的掺杂均能降低TiAlN涂层的摩擦因数和磨损率,掺杂硅涂层的摩擦因数(0.25)略低于掺杂铬涂层(0.27),磨损率(1.8×10−5 mm3·N−1·m−1)略高于掺杂铬涂层(1.4×10−5 mm3·N−1·m−1)。
-
表 1 激光熔覆层不同位置的EDS分析结果
Table 1 EDS analysis results at different positions of laser cladding layer
位置 质量分数/% Ni Cr Mo Fe 顶部 灰白色相 61.43 19.61 14.31 4.65 灰黑色相 63.68 19.81 11.78 4.73 底部 灰白色相 43.38 15.31 14.02 27.29 灰黑色相 44.62 15.47 10.16 29.75 表 2 激光熔覆层在不同温度NaCl溶液中的电化学拟合参数
Table 2 Electrochemical fitting parameters of laser cladding layer in NaCl solution at different temperatures
温度/℃ 自腐蚀电位/V 自腐蚀电流密度/(10−7 A·cm−2) 破钝电位/V 50 -0.238 8 2.047 0.350 9 70 -0.252 1 3.147 0.331 2 表 3 激光熔覆层在不同温度NaCl溶液中的电化学阻抗谱拟合参数
Table 3 Fitting parameters of electrochemical impedance spectra of laser cladding layer in NaCl solutionat different temperatures
温度/℃ R1/(Ω·cm2) R2/(Ω·cm2) R3/(Ω·cm2) Q/(10−5 F·cm−2) C/(10−6 F·cm−2) 50 4.544 4 557.0 2.225×105 4.090 1.222 70 3.756 225.8 2.014×105 3.969 2.866 -
[1] 黄超,许锋,李世伟. 秦山核电厂堆内构件围板螺栓老化评估[J]. 核动力工程,2022,43(增刊1):16-21. HUANG C ,XU F ,LI S W. Aging evaluation of shroud bolts for internals of Qinshan nuclear power plant[J]. Nuclear Power Engineering,2022,43(S1):16-21.
[2] 刘红波,林思伟,张高青. 高温下螺栓球节点螺栓连接抗拉性能试验研究[J]. 天津大学学报(自然科学与工程技术版),2022,55(8):862-866. LIU H B ,LIN S W ,ZHANG G Q. Experimental study of the tensile performance of bolt-ball connections in bolt ball joint at high temperatures[J]. Journal of Tianjin University(Science and Technology),2022,55(8):862-866.
[3] 陈勇,赵会龙,沈文韬,等. 超高大跨越输电铁塔施工机械设备监管方案研究[J]. 建筑结构,2022,52(增刊1):3209-3215. CHEN Y ,ZHAO H L ,SHEN W T ,et al. Research on supervision scheme of construction machinery and equipment for super-high spanning transmission tower[J]. Building Structure,2022,52(S1):3209-3215.
[4] 刘光辉,伍川,吕中宾,等. 输电铁塔螺栓紧固特性影响因素试验研究[J]. 现代制造工程,2022(3):84-91. LIU G H ,WU C ,LÜ Z B ,et al. Experimental study on factors of bolt fastening characteristics for transmission line tower[J]. Modern Manufacturing Engineering,2022(3):84-91.
[5] 范巍,兰春虎. 电厂脱硫增压风机叶轮紧固螺栓断裂失效分析[J]. 资源节约与环保,2016(6):42. FAN W ,LAN C H. Fracture failure analysis of fastening bolt of desulfurization booster fan impeller in power plant[J]. Resources Economization & Environmental Protection,2016(6):42.
[6] 侯旭明. 通讯铁塔倒塌原因分析[J]. 理化检验(物理分册),2005,41(5):259-261. HOU X M. Collapse analysis of a communication iron tower[J]. Physical Testing and Chemical Analysis(Part A:Physical Testing),2005,41(5):259-261.
[7] 迟殿军. 高强度螺栓副失效引起的塔机倒塌事故分析[J]. 建筑安全,2006,21(7):39-39. CHI D J. Analysis of collapse accident of tower crane caused by failure of high strength bolt pair[J]. Construction Safety,2006,21(7):39-39.
[8] JIANG C ,XIONG W ,CAI C S ,et al. Preload loss of high-strength bolts in friction connections considering corrosion damage and fatigue loading[J]. Engineering Failure Analysis,2022,137:106416. [9] 江文强,陈欣阳,刘景立,等. 含螺栓连接输电铁塔主材的承载性能研究[J]. 中国工程机械学报,2021,19(6):471-476. JIANG W Q ,CHEN X Y ,LIU J L ,et al. Study on bearing capacity of transmission tower main leg with bolted joints[J]. Chinese Journal of Construction Machinery,2021,19(6):471-476.
[10] LIU C C ,LIU Z D ,GAO Y ,et al. Investigation on the corrosion behavior of Ni-Cr-Mo-W-xSi laser cladding coating in H2S corrosion environment[J]. Applied Surface Science,2022,578:152061. [11] 尹正生,薛鑫宇,蒋永锋,等. 纯钛表面FeCoNiCr0.5Al0.8高熵合金脉冲激光熔覆层的显微组织和性能[J]. 机械工程材料,2022,46(4):21-25. YIN Z S ,XUE X Y ,JIANG Y F ,et al. Microstructure and properties of FeCoNiCr0.5Al0.8 high entropy alloy pulsed laser cladding layer on pure titanium surface[J]. Materials for Mechanical Engineering,2022,46(4):21-25.
[12] TANAKA K ,YAMAGUCHI T. Direct observation of bubble generation processes inside a molten pool during laser cladding[J]. Surface and Coatings Technology,2022,447:128831. [13] WANG X Y ,LIU Z D ,LI J Y ,et al. Effect of heat treatment on microstructure,corrosion resistance,and interfacial characteristics of Inconel 625 laser cladding layer[J]. Optik,2022,270:169930. [14] 王秀民,张艳茹,郝义磊,等. 哈氏合金C276在溴胶混合液中的耐蚀性[J]. 表面技术,2017,46(9):223-228. WANG X M ,ZHANG Y R ,HAO Y L ,et al. Corrosion-resisting behavior of the Hastelloy C-276 alloy in the bromine glue mixture[J]. Surface Technology,2017,46(9):223-228.
[15] LIU S N ,LIU Z D ,WANG Y T ,et al. A comparative study on the high temperature corrosion of TP347H stainless steel,C22 alloy and laser-cladding C22 coating in molten chloride salts[J]. Corrosion Science,2014,83:396-408. [16] 李京,李林子,侯介山,等. 热处理工艺对一种铸造镍基高温合金组织演化和力学性能的影响[J]. 材料热处理学报,2022,43(6):65-78. LI J ,LI L Z ,HOU J S,et al. Effect of heat treatment process on microstructure evolution and mechanical properties of a cast nickel based superalloy[J]. Transactions of Materials and Heat Treatment,2022,43(6):65-78.
[17] QIU Z J ,WU B T ,ZHU H L ,et al. Microstructure and mechanical properties of wire arc additively manufactured Hastelloy C276 alloy[J]. Materials & Design,2020,195:109007. [18] 肖博,朱忠亮,李瑞涛,等. 超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展[J]. 热力发电,2020,49(10):30-37. XIAO B ,ZHU Z L ,LI R T ,et al. Research status of high temperature corrosion of candidate materials for power generation system using supercritical carbon dioxide as working fluid[J]. Thermal Power Generation,2020,49(10):30-37.
[19] 杨金龙,龙安平,熊江英,等. 一种新型镍基粉末高温合金组织和力学性能研究[J]. 稀有金属材料与工程,2022,51(3):1031-1039. YANG J L, LONG A P ,XIONG J Y,et al. Microstructure and mechanical properties of novel nickel-based P/M superalloy[J]. Rare Metal Materials and Engineering,2022,51(3):1031-1039.
[20] 余钟芬. 高低温交互作用下镍基高温合金腐蚀行为的研究[D]. 沈阳:东北大学,2014. YU Z F. Corrosion behavior of Ni-based superalloy at high temperature corrosion interaction with low temperature corrosion[D]. Shenyang:Northeastern University,2014.
[21] 王宗江,王鑫宇,徐凯,等. 紧固件用耐蚀合金熔覆层的制备与性能研究[J]. 应用激光,2019,39(5):778-784. WANG Z J ,WANG X Y ,XU K ,et al. Preparation and properties of corrosion resistant alloy cladding layer for fasteners[J]. Applied Laser,2019,39(5):778-784.
[22] 曹强,练国富,肖石洪,等. 基于灰色关联分析激光熔覆Ni60A工艺参数优化[J]. 精密成形工程,2022,14(1):173-181. CAO Q ,LIAN G F ,XIAO S H ,et al. Optimization of process parameters of laser cladding Ni60A based on gray relational analysis[J]. Journal of Netshape Forming Engineering,2022,14(1):173-181.
[23] 刘艳,刘朋帅,郭洋,等. 激光熔覆超高强度钢的稀释率研究[J]. 激光与光电子学进展,2021,58(23):182-190. LIU Y ,LIU P S, GUO Y ,et al. Dilution rate of laser cladded ultrahigh strength steel[J]. Laser & Optoelectronics Progress,2021,58(23):182-190.
[24] 成俊秀,李艳玲,李启航,等. 高速激光熔覆工艺参数对Fe基合金熔覆层组织与耐磨性能的影响[J]. 热加工工艺,2024,53(10):53-58. CHENG J X ,LI Y L ,LI Q H ,et al. Effects of high-speed laser cladding technology process parame on microstructure and wear resistance of Fe based alloy laser cladding layer[J]. Hot Working Technology,2024,53(10):53-58.
[25] 魏亚,付禹,潘志敏,等. 酸性介质环境中温度对Ti-Mo合金耐蚀性的影响[J]. 表面技术,2022,51(9):168-177,187. WEI Y ,FU Y ,PAN Z M ,et al. The influence of temperature on corrosion resistance of Ti-Mo alloy in acidic medium[J]. Surface Technology,2022,51(9):168-177,187.
[26] ZHANG M ,SHUAI G L ,WANG Y Q,et al. Corrosion behaviors at different temperature based on the ultrafine-grained structure of Al-Fe alloy[J]. Materials Letters,2022,311:131508. [27] ZHENG C ,LIU Z D ,LIU Q B,et al. Comparative investigation on corrosion behavior of laser cladding C22 coating,Hastelloy C22 alloy and Ti-6Al-4V alloy in simulated desulfurized flue gas condensates[J]. Journal of Materials Research and Technology,2022,18:2194-2207. [28] WEI S P ,WANG G ,YU J C ,et al. Competitive failure analysis on tensile fracture of laser-deposited material for martensitic stainless steel[J]. Materials & Design,2017,118:1-10. [29] 李允东,董刚,姚建华. 激光修复28CrMoNiV钢热影响区的组织演变[J]. 中国激光,2016,43(8):153-158. LI Y D ,DONG G ,YAO J H. Microstructure evolution of heat-affected zones of 28CrMoNiV steel repaired by lasers[J]. Chinese Journal of Lasers,2016,43(8):153-158.
[30] XUE J L ,GUO W ,ZHANG Y X ,et al. Local microstructure and mechanical characteristics of HAZ and tensile behavior of laser welded QP980 joints[J]. Materials Science and Engineering:A,2022,854:143862. [31] 施建军,操光辉. 激光选区熔化制备的Inconel 718合金抗氧化性能研究[J]. 上海金属,2023,45(6):55-62. SHI J J ,CAO G H. Research on oxidation resistance of inconel 718 alloy fabricated by selective laser melting[J]. Shanghai Metals,2023,45(6):55-62.
[32] CHEN J P ,ZHOU Q Y ,LIU Y ,et al. Influence of temperature on the corrosion behavior of 18Mn–18Cr austenitic stainless steel in 3.5 wt.% NaCl solution[J]. International Journal of Electrochemical Science,2022,17(10):22105. [33] 冉斗,孟惠民,李全德,等. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报,2021,41(3):362-368. RAN D ,MENG H M ,LI Q D ,et al. Effect of temperature on corrosion behavior of 14Cr12Ni3WMoV stainless steel in 0.02 mol/L NaCl solution[J]. Journal of Chinese Society for Corrosion and Protection,2021,41(3):362-368.