Preparation and Properties of cBN@TiN/β-Sialon Composite Ceramic and Cutting Tool
-
摘要:
采用放电等离子烧结技术,通过原位生成TiN包覆cBN(cBN@TiN)颗粒制备了cBN@TiN/β-Sialon复合陶瓷,研究了其物相组成、微观形貌、力学性能以及制成的可转位刀具连续干式切削球墨铸铁时的切削性能,并与β-Sialon陶瓷及刀具进行对比分析。结果表明:cBN@TiN/β-Sialon复合陶瓷由β-Sialon、cBN和TiN相组成,其抛光态表面无明显气孔,cBN@TiN颗粒均匀分布,未发生明显脱落,基体相晶粒呈等轴状和长棒状;cBN@TiN/β-Sialon复合陶瓷的相对密度和晶粒尺寸与β-Sialon陶瓷相近,硬度和断裂韧性分别为(17.40±0.11)GPa和(6.19±0.10)MPa·m1/2,高于β-Sialon陶瓷;与β-Sialon陶瓷刀具相比,cBN@TiN/β-Sialon复合陶瓷刀具的耐磨性更好,切削寿命更长。
-
关键词:
- β-Sialon陶瓷 /
- cBN /
- 力学性能 /
- 切削性能
Abstract:cBN@TiN/β-Sialon composite ceramic were prepared by in-situ generation of TiN coated cBN (cBN@TiN) particles by discharge plasma sintering technique. The phase composition, micromorphology and mechanical properties of the ceramic were studied. The cutting properties of indexable tool maded by the composite ceramic in continuous dry cutting ductile iron were also studied. The microstructure and propertres of the composite ceramic and cutting tool were compared with those of β-Sialon ceramic and cutting tool. The results show that the cBN@TiN/β-Sialon composite ceramic was composed of β-Sialon, cBN and TiN phases. There were no obvious pores on the polished surface of the ceramic, cBN@TiN particles were evenly distributed and did not fall off obviously. The matrix phase grains were equiaxial and long rod-like. The relative density and grain size of cBN@TiN/β-Sialon composite ceramic were similar to those of the β-Sialon ceramic. The hardness and fracture toughness of the composite ceramic were (17.40±0.11) GPa and (6.19±0.10) MPa · m1/2, respectively, which were higher than those of the β-Sialon ceramic. Compared with the β-Sialon ceramic cutting tool, the cBN@TiN/β-Sialon composite ceramic cutting tool had better wear resistance and a longer cutting life.
-
Keywords:
- β-Sialon ceramic /
- cBN /
- mechanical property /
- cutting property
-
0. 引言
塞隆(Sialon)陶瓷是通过向Si3N4中添加Al2O3和AlN,使Si—N键在烧结过程中被Al—N键和Al—O键取代而形成的一种由硅、铝、氧、氮元素组成的固溶体材料[1-3]。Sialon陶瓷兼具Al2O3陶瓷的抗高温氧化性和Si3N4陶瓷的高硬度、高韧性、高强度、高耐磨性等,是一种综合性能较好的陶瓷材料,广泛用于制作切削刀具、耐磨喷嘴等[4-5]。Sialon陶瓷包括α-Sialon、β-Sialon和O'-Sialon等几类,其中以柱状晶组织生长的β-Sialon陶瓷韧性最优。
Sialon陶瓷刀具多用于灰铸铁、镍基高温合金等难加工材料的切削[6-7],但是在切削球墨铸铁的过程中会发生严重磨损。向Sialon陶瓷中添加第二相可以使其获得更强的力学性能和耐磨性。立方氮化硼(cBN)具有高硬度、高导热性和较低的摩擦因数等特点[8-9],将其添加到Sialon陶瓷中制备的cBN/Sialon复合陶瓷是受到高度关注的一种刀具材料[10-11]。然而,由于Sialon陶瓷的致密化烧结温度通常在1 550 °C以上且需要一定的保温时间[12],而高共价键的cBN高温稳定性较差,在高温下易转变为六方氮化硼(hBN),且hBN的转变量随保温时间的延长而增加,这会导致复合陶瓷的力学性能降低[13-15],因此需要选择合适的烧结工艺,以在足够高的温度和较短的时间下实现复合陶瓷的致密化烧结。此外,由于cBN与Sialon陶瓷的结合性较差,cBN/Sialon复合陶瓷制成的刀具在切削过程中易发生cBN颗粒脱落,造成过早失效。TiN与Sialon陶瓷具有良好的化学相容性,向Sialon陶瓷中引入TiN包覆cBN(记为cBN@TiN)粉体有望解决结合性差以及高温相变的问题[15],但此方面研究较少。为此,作者采用放电等离子烧结技术制备了cBN@TiN/β-Sialon复合陶瓷,研究了复合陶瓷的物相组成、微观形貌、力学性能,以及制成刀具连续干式切削球墨铸铁的切削性能,并与β-Sialon陶瓷及刀具进行对比分析。
1. 试样制备与试验方法
1.1 试样制备
试验原料包括α-Si3N4粉体(粒径0.2 μm,纯度大于98%,由日本宇部兴产株式会社提供)、AlN粉体(粒径3~5 μm,纯度大于99%,由上海阿拉丁公司提供)、Al2O3粉体(粒径1~3 μm,纯度大于99%,由日本大明化学工业株式会社提供)、Y2O3粉体(粒径5 μm,纯度大于99%,由北京泛德辰有限公司提供)、cBN粉体(粒径2~4 μm,纯度大于99%,由郑州万创智造科技有限公司提供)、TiO2粉体(粒径20 nm,纯度大于99%,由日本帝国化工株式会社提供)、碳粉(粒径20 nm,纯度大于99%,由北京迈瑞达科技有限公司提供)。
将cBN、TiO2和碳粉按照质量比为20.00∶1.54∶0.46混合,在实验室自制简易机械粉体融合器平台上进行机械干态颗粒涂层试验,转速为3 000 r·min−1,包覆时间为10 min,制备得到TiO2+碳包覆cBN粉体,记为cBN@(TiO2+C)粉体。在烧结过程中,cBN@(TiO2+C)粉体能够发生碳热还原氮化反应,原位形成cBN@TiN颗粒[16-17]。按照α-Si3N4、AlN、Al2O3和Y2O3质量比为64.92∶9.48∶23.60∶2.00配料,其中Y2O3为烧结助剂,再加入质量分数10%的cBN@(TiO2+C)粉体,采用JM-6型辊式球磨机进行球磨,磨球为直径3~8 mm的Si3N4球,溶剂为无水乙醇,磨球、溶剂与粉体的质量比为2∶2∶1,转速为150 r·min−1,球磨时间为24 h。采用H-HPD10FL型放电等离子烧结炉对混合粉体进行致密化烧结,烧结温度为1 650 °C,烧结压力为40 MPa,烧结气氛为高纯氮气,以200 °C·min−1的速率升温至1 000 °C,再以100 °C·min−1的速率升温至1 650 °C并保温7 min烧结,随后停止加压,以100 °C·min−1的速率降温至800 °C后随炉冷却至室温,获得cBN@TiN/β-Si4Al2O2N6复合陶瓷试样,简记为cBN@TiN/β-Sialon复合陶瓷试样。使用相同的混料工艺和烧结工艺制备了未添加cBN@(TiO2+C)粉体的纯β-Sialon陶瓷试样作为对照。
1.2 试验方法
采用阿基米德排水法测定陶瓷的密度,并计算相对密度。采用MINIFLEX600型X射线衍射仪(XRD)进行物相分析,铜靶,Kα射线,电压为40 kV,电流为15 mA,扫描范围为10°~90°,扫描速率为10 (°)·min−1。采用SU8220型场发射扫描电子显微镜(SEM)观察经金刚石磨盘抛光处理的陶瓷试样的微观形貌,再将试样置于加热至350 °C的氢氧化钠中,腐蚀15~20 s后观察其微观形貌。采用Nano measure软件统计平均晶粒尺寸。采用SEM配套的能谱分析仪(EDS)分析微区成分。采用HV S-302C/LCD型维氏硬度计测定显微硬度并通过压痕法[18-19]测定断裂韧性,载荷分别为9.8,98 N,保载时间均为10 s,测5~8次取平均值。采用SEM观察断裂韧性测试后的表面形貌。
根据GB/T 15306.1—2008将陶瓷加工为SNGN 120408T 02020型可转位陶瓷刀具,尺寸为12.7 mm×12.7 mm×4.76 mm。将陶瓷刀具装夹在CSSNL2525M12型刀杆上,在ETC3650h型数控车床上对QT500-7型球墨铸铁进行连续干式车削加工,球墨铸铁的硬度为130~180 HB,抗拉强度为400 MPa,断后伸长率为18%;切削速度为500 m·min−1,进给量为0.1 mm·r−1,切削深度为0.5 mm。采用SMZ745T型三目体视显微镜观察并测定后刀面和刀尖切深位置的竖直划痕长度,记为磨损量,以磨损量达到300 μm时刀具的切削长度为依据比较刀具的切削寿命。
2. 试验结果与讨论
2.1 物相组成和微观形貌
由图1可见:β-Sialon陶瓷中只检测出β-Sialon的衍射峰,说明其原料粉体在致密化烧结后完全固溶成β-Sialon相;cBN@TiN/β-Sialon复合陶瓷中除了检测出β-Sialon的衍射峰外,还检测出cBN和TiN的衍射峰,说明cBN@(TiO2+C)中的TiO2在烧结过程中发生碳热还原氮化反应形成了TiN。两种陶瓷均未检测到明显的hBN相,说明在此温度和时间参数下高温烧结时cBN的相变程度较低。
由图2可见:抛光处理后两种陶瓷的表面均没有发现明显的气孔,说明陶瓷的致密程度较高。测得β-Sialon和cBN@TiN/β-Sialon复合陶瓷的相对密度分别为99.8%,98.1%。抛光后cBN@TiN/β-Sialon复合陶瓷的表面存在均匀分布的cBN@TiN颗粒,没有出现明显的颗粒脱落现象,说明cBN@TiN与β-Sialon基体形成了较强的结合。腐蚀后,两种陶瓷中均出现β-Sialon玻璃相腐蚀所形成的孔洞,β-Sialon基体晶粒均呈现等轴状和长棒状两种形态。统计得到β-Sialon和cBN@TiN/β-Sialon复合陶瓷的平均晶粒尺寸分别为0.27,0.28 μm。
由图3可见:β-Sialon基体相富集氧、铝、硅和氮元素,颗粒表面富集硼和氮元素,颗粒与基体界面处及附近富集钛元素且未检测出明显的氧元素,这进一步验证了烧结后cBN表面形成了TiN包覆层。
2.2 力学性能
试验测得β-Sialon陶瓷和cBN@TiN/β-Sialon复合陶瓷的硬度分别为(15.20±0.22),(17.40±0.11) GPa,断裂韧性分别为(5.12±0.18),(6.19±0.10) MPa·m1/2,cBN@TiN/β-Sialon复合陶瓷的硬度和断裂韧性更大。影响陶瓷硬度和韧性的因素一般包括晶粒形貌尺寸、相对密度、cBN的添加量。β-Sialon陶瓷和cBN@TiN/β-Sialon复合陶瓷的晶粒形貌尺寸和相对密度均相似,推测是cBN@TiN的添加起到了提高硬度和增韧的作用。
由图4可知:压痕试验后,β-Sialon陶瓷表面的裂纹较为平直,偏转较少,而cBN@TiN/β-Sialon复合陶瓷表面的裂纹在cBN@TiN颗粒处产生了偏转,并沿着cBN@TiN颗粒与β-Sialon基体的界面处扩展,说明cBN@TiN颗粒与β-Sialon基体之间形成了弱界面。由此来看,cBN@TiN的增韧机理是cBN@TiN颗粒与β-Sialon基体形成弱界面导致的裂纹偏转增韧。
2.3 切削性能
由图5可见:连续干式切削QT500-7球墨铸铁时,两种陶瓷刀具后刀面和刀尖的磨损量均随切削长度的增加而增大,其磨损过程均可以分为初期磨损阶段(切削长度小于183 m)和稳定磨损阶段(切削长度大于183 m)。初期磨损阶段磨损速率(可以由曲线斜率反映)大,主要原因是此阶段刀刃尚无磨耗,比较锋利,刀刃与球墨铸铁的接触面积很小,承受了很大的正向压力,所以磨损得快;稳定磨损阶段的磨损速率显著减小,磨损量和切削长度接近线性增加关系,主要原因是刀刃经历初期磨损后,表面缺陷减少,刀刃与球墨铸铁的接触面积较大,呈现稳定磨损。与β-Sialon陶瓷刀具相比,在相同的切削长度下cBN@TiN/β-Sialon复合陶瓷刀具后刀面和刀尖的磨损量均更小,说明其耐磨性更好,在磨损量达到300 μm时刀具后刀面和刀尖的切削长度均更长,分别为653,806 m,说明复合陶瓷刀具的切削寿命更长。由此可见,原位生成的cBN@TiN颗粒增强了β-Sialon陶瓷刀具的耐磨性和切削性能。
3. 结论
(1)cBN@TiN/β-Sialon复合陶瓷由β-Sialon、cBN和TiN相组成,其抛光态表面无明显气孔,cBN@TiN颗粒均匀分布在β-Sialon基体中,未发生明显脱落;β-Sialon基体晶粒呈等轴状和长棒状。
(2)cBN@TiN/β-Sialon复合陶瓷的相对密度和平均晶粒尺寸与β-Sialon陶瓷相近,硬度和断裂韧性分别为(17.40±0.11)GPa和(6.19±0.10) MPa·m1/2,均高于β-Sialon陶瓷。
(3)与β-Sialon陶瓷刀具相比,相同切削长度下cBN@TiN/β-Sialon复合陶瓷刀具的磨损量更小,耐磨性更好,在磨损量达到300 μm时的切削长度更长,切削寿命更长。
-
-
[1] 张展,谭大旺,罗嗣春,等. MoSi2添加量对放电等离子烧结α-Sialon陶瓷性能的影响[J]. 机械工程材料,2022,46(5):47-52. ZHANG Z ,TAN D W ,LUO S C ,et al. Effect of MoSi2 adding amount on properties of α-sialon ceramics by spark plasma sintering[J]. Materials for Mechanical Engineering,2022,46(5):47-52.
[2] EL-AMIR A A M ,EL-MADDAH A A ,EWAIS E M M ,et al. Sialon from synthesis to applications:An overview[J]. Journal of Asian Ceramic Societies,2021,9(4):1390-1418. [3] 李发亮,孟录,张海军,等. Ca-α/β-Sialon结合刚玉复合材料的力学性能[J]. 机械工程材料,2015,39(2):73-76. LI F L ,MENG L ,ZHANG H J ,et al. Mechanical properties of Ca-α/β-sialon bonded corundum composites[J]. Materials for Mechanical Engineering,2015,39(2):73-76.
[4] ABUBAKAR A A ,AKHTAR S S ,ALOTAIBI A D ,et al. Development and analysis of functionally-graded SiAlON composites with computationally designed properties for cutting inserts[J]. Journal of Materials Research and Technology,2023,23:5861-5879. [5] BITTERLICH B ,BITSCH S ,FRIEDERICH K. SiAlON based ceramic cutting tools[J]. Journal of the European Ceramic Society,2008,28(5):989-994. [6] DAOUSH W M ,PARK H S ,HONG S H. Fabrication of TiN/cBN and TiC/diamond coated particles by titanium deposition process[J]. Transactions of Nonferrous Metals Society of China,2014,24(11):3562-3570. [7] FERNÁNDEZ-VALDIVIELSO A ,LÓPEZ DE LACALLE L N ,FERNÁNDEZ-LUCIO P ,et al. Turning of austempered ductile iron with ceramic tools[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2021,235(3):484-493. [8] 郭永刚,吕志. PCD和PCBN超硬刀具应用与研究现状浅析[J]. 科技与创新,2022(24):154-158. GUO Y G ,LÜ Z. Analysis on application and research status of PCD and PCBN superhard tools[J]. Science and Technology & Innovation,2022(24):154-158.
[9] MATOS F ,SILVA T E F ,MARQUES F ,et al. Machinability assessment of Inconel 718 turning using PCBN cutting tools[J]. Procedia CIRP,2023,117:468-473. [10] 吴新泽,吴一,潘展,等. CeO2对β-Sialon-cBN复合材料显微结构和力学性能的影响[J]. 人工晶体学报,2016,45(3):757-761. WU X Z ,WU Y ,PAN Z ,et al. Influence of CeO2 on microstructures and mechanical properties of β-sialon-c BN composites[J]. Journal of Synthetic Crystals,2016,45(3):757-761.
[11] 岳新艳,何超,石晓飞. β-SiAlON-cBN陶瓷复合材料的制备与性能[J]. 材料与冶金学报,2014,13(4):288-292. YUE X Y ,HE C ,SHI X F. Preparation and properties of β-SiAlON-cBN ceramic composites[J]. Journal of Materials and Metallurgy,2014,13(4):288-292.
[12] ZHANG J ,SUN F ,ZHANG W R ,et al. Cost-effective fabrication of α-SiAlON ceramics with CeO2 addition for cutting tool applications[J]. International Journal of Applied Ceramic Technology,2023,20(2):1215-1224. [13] GARRETT J C ,SIGALAS I ,HERRMANN M ,et al. cBN reinforced Y-α-SiAlON composites[J]. Journal of the European Ceramic Society,2013,33(11):2191-2198. [14] HOTTA M ,GOTO T. Effect of time on microstructure and hardness of βSiAlON–cubic boron nitride composites during spark plasma sintering[J]. Ceramics International,2011,37(2):521-524. [15] TOKITA MThe potential of spark plasma sintering(SPS)method for the fabrication on an industrial scale of functionally graded materialsAdvances in Science and TechnologySwitzerlandTrans Tech Publications Ltd2010322331TOKITA M. The potential of spark plasma sintering(SPS)method for the fabrication on an industrial scale of functionally graded materials[C]//Advances in Science and Technology. Switzerland:Trans Tech Publications Ltd,2010:322-331. [16] 常佳佳. QT500-7球墨铸铁调质处理后车削优选[J]. 机械研究与应用,2019,32(2):150-151. CHANG J J. Turning optimization of QT500-7 spheroidal graphite cast iron after quenching and tempering[J]. Mechanical Research & Application,2019,32(2):150-151.
[17] 李宝栋,易湘斌,吴国明. 铣削等温淬火球墨铸铁的切削力及刀具磨损研究[J]. 装备制造技术,2017(4):70-72. LI B D ,YI X B ,WU G M. Study on cutting force and tool wear in milling austempered ductile iron[J]. Equipment Manufacturing Technology,2017(4):70-72.
[18] 罗展鹏,刘润平,郭伟明,等. 基于机械干态颗粒涂层技术制备cBN@TiN粉体[J]. 机械工程材料,2024,48(3):37-42. LUO Z P ,LIU R P ,GUO W M ,et al. Preparation of cBN@TiN powder based on mechanical dry particle coating technology[J]. Materials for Mechanical Engineering,2024,48(3):37-42.
[19] EVANS A G ,CHARLES E A. Fracture toughness determinations by indentation[J]. Journal of the American Ceramic Society,1976,59(7/8):371-372.