Effect of Welding Heat Input on Microstructure and Properties of 0Cr13Ni4Mo Martensitic Stainless Steel Arc Welded Joint
-
摘要:
在不同焊接热输入(9,13,17 kJ·cm−1)下对0Cr13Ni4Mo马氏体不锈钢板进行多层多道电弧焊,研究了焊接热输入对焊接接头显微组织与力学性能的影响。结果表明:不同焊接热输入下所得焊接接头焊缝和热影响区的组织均为板条马氏体、少量δ铁素体和残余奥氏体;随着焊接热输入的增大,焊缝和热影响区的板条马氏体变粗大,δ铁素体含量增多;不同焊接热输入下焊接接头的抗拉强度和屈服强度分别约为810,600 MPa,均高于母材且符合项目规定,屈强比均小于0.9,接头的拉伸性能良好,拉伸后均在母材处断裂;随着焊接热输入增大,冲击吸收能量减小,焊接热输入为9,13 kJ·cm−1下冲击断口中的韧窝尺寸略大且均匀,接头的冲击韧性更好;不同焊接热输入下焊缝的硬度为310~340 HV,其平均硬度高于热影响区和母材,随着焊接热输入的增加,焊缝和热影响区的硬度均略微降低。
-
关键词:
- 焊接热输入 /
- 0Cr13Ni4Mo马氏体不锈钢 /
- 显微组织 /
- 力学性能
Abstract:Multi-layer and multi-pass arc welding was conducted on 0Cr13Ni4Mo martensitic stainless steel plates under different welding heat inputs (9, 13, 17 kJ · cm−1), and the effect of welding heat input on the microstructure and mechanical properties of the welded joints was studied. The result show that the microstructures of welded joints under different welding heat inputs were all composed of lath martensite, a small amount of δ ferrite and residual austenite. With the increase of welding heat input, the lath martensitic structure of the weld and the heat-affected zone became coarse, and the δ ferrite content increased. Under different welding heat inputs, the tensile strength and yield strength of the welded joints were approximately 810, 600 MPa, respectively, which were higher than those of the base metal and complied with the project specification. The yield ratio was less than 0.9. The joints had good tensile properties, and fractured at the base metal after tension. With the increase of welding heat input, the impact absorption energy decreased. When the welding heat inputs were 9, 13 kJ · cm−1, the size of the dimples in the impact fracture was slightly larger and more uniform, indicating the better impact toughness of the joint. The hardness of the weld under different welding heat inputs was 310–340 HV, and the average hardness was higher than that of the heat affected zone and base metal. With increasing welding heat input, the hardness of the weld and the heat affected zone slightly decreased.
-
0. 引言
酸性气田中存在H2S和CO2等腐蚀介质,在进行开发时管材的腐蚀已成为一个巨大的难题,并且若存在单质硫,腐蚀更加严重[1-9]。在这种高酸性环境中,管道的选材转向抗H2S和单质硫腐蚀能力更强的Ni-Fe-Cr三元合金或Ni-Cr-Fe-Mo-Cu多元合金,如元坝气田采用了028、825、G3等镍基合金管[10],普光气田采用了718等镍基合金管[11]。
镍基合金具有优异的防腐性能,但在高温、H2S、CO2与单质硫的环境中仍可能发生较为严重的腐蚀。方建波等[12]分析了某热采井中825合金的腐蚀原因,发现在高温高压环境中825合金发生了氧腐蚀与硫腐蚀。张瑞等[13]发现在205 ℃,含H2S、CO2、氯离子及单质硫的环境中,718合金发生明显的点蚀与均匀腐蚀,高温下的单质硫直接或间接与金属发生反应导致大面积的均匀腐蚀。根据ISO15156—2020,在温度高于132 ℃时,825等镍基合金在含单质硫环境下的适用性并不明确,而目前对高含硫环境中825合金的耐局部腐蚀能力的研究较少。为此,作者根据某高酸性气田生产工况,利用高温高压反应釜模拟出高温,含H2S、CO2、氯离子的气田模拟地层水环境,并对825合金进行腐蚀挂片试验,对比分析了825合金在含单质硫与不含单质硫条件下的局部腐蚀行为,以期为在含单质硫酸性气田中管道的选材提供一定指导。
1. 试样制备与试验方法
试验材料选用新的825合金无缝管,由江苏武进不锈股份有限公司提供,外径为168.3 mm,壁厚为14.3 mm,化学成分如表1所示。在825合金管上截取尺寸为30 mm×15 mm×3 mm的腐蚀挂片试样,将试样用300#,600#,800#,1200#砂纸逐级打磨,经石油醚、无水乙醇清洗并风干后,用精度为0.1 mg的电子天平称取质量并置于干燥皿中待用。
元素 C Cr Ni Mo Ti Si Cu P Mn Fe 质量分数/% 0.014 21.26 39.54 2.89 0.81 0.18 1.82 0.01 0.44 33.04 采用西南石油大学自研的高温高压反应釜进行腐蚀挂片试验,试验溶液为某高酸性气田模拟地层水,组成见表2,采用NaCl(分析纯)、Na2SO4(分析纯)、NaHCO3(分析纯)、CaCl2(分析纯)、MgCl2·6H2O(分析纯)、KCl(分析纯)及去离子水(一级水)配制。在高温高压反应釜中加入2 L试验溶液,将试样挂在试样架上并放入反应釜中,然后关闭反应釜并密封;向高温高压反应釜中持续通入低流量高纯氮除氧2 h,之后将反应釜温度升至132 ℃,待温度稳定后,先向釜内通入H2S使压力达到4.8 MPa,然后通入CO2达到总压6.4 MPa。试验设置5种工况:工况1为不添加单质硫腐蚀6 d;工况2~5均以熔覆的方式添加单质硫(试验开始前将单质硫与试样紧密包裹,放入高温高压釜中,待温度上升至132 ℃后,单质硫即处于熔覆态,与试样充分接触),添加量为每升试验溶液中添加10 g单质硫,腐蚀时间分别为3,6,9,12 d。不同试验条件下均设置5个平行试样,其中3个试样用于计算腐蚀速率,其余2个试样用于腐蚀形貌观察及微区成分分析。
组成 Na++K+ Ca2+ Mg2+ Cl− 质量浓度/(mg·L−1) 31 702 372 73 42 750 8 816 824 用去膜液(10 g六次甲基四胺+100 mL浓盐酸+去离子水定容至1 L)去除试样表面腐蚀产物,再用去离子水清洗,无水乙醇脱水后风干;用精度为0.1 mg的电子天平称取腐蚀后的试样质量,取3个试样的平均值计算腐蚀速率,计算公式为
(1) 式中:v为腐蚀速率,mm·a−1;Δm为腐蚀前后试样的质量差,g;ρ为试样密度,g·cm−3;A为试样表面积,cm2;t为腐蚀时间,h。
采用FRI Quanta 650 FEG型扫描电镜(SEM)观察试样的腐蚀形貌,用附带的能谱仪(EDS)分析腐蚀产物的元素组成。采用VHX-7000型景深三维显微镜观察试样的局部腐蚀形貌。
2. 试验结果与讨论
2.1 宏观腐蚀形貌
由图1可见:在未添加单质硫腐蚀6 d(工况1)条件下,825合金表面仍有金属光泽,几乎未见腐蚀现象;在添加单质硫腐蚀3 d(工况2)条件下,合金表面存在肉眼可见的点蚀,当腐蚀时间延长至6,9,12 d(工况3,4,5)时,表面存在明显的局部腐蚀坑,并且局部腐蚀坑的面积随腐蚀时间的延长而增大,说明局部腐蚀随时间延长越发严重。
2.2 局部腐蚀形貌
由图2可知:在未添加单质硫腐蚀6 d时,825合金表面较平整,腐蚀痕迹轻微;添加单质硫后,随着腐蚀时间由3 d延长至12 d,合金表面的局部腐蚀坑最大深度由7.95 μm增大到48.29 μm,并且局部腐蚀坑的面积也增大。与未添加单质硫腐蚀6 d条件下(局部腐蚀最大深度2.63 μm)相比,添加单质硫腐蚀6 d时合金的局部腐蚀坑最大深度增加到15.41 μm,局部腐蚀程度加重。
2.3 腐蚀速率
工况1、工况2、工况3、工况4、工况5下合金的腐蚀速率分别为0.007 7,0.055 2,0.073 6,0.088 0,0.114 5 mm·a−1。对比可知,添加单质硫腐蚀6 d时,825合金的腐蚀速率相比于未添加单质硫腐蚀6 d时增大了8.56倍,这可能是因为单质硫使825合金表面形成的钝化膜结构与成分发生了变化[14],对基体的保护作用有所减弱。添加单质硫条件下825合金的腐蚀速率随着腐蚀时间的延长逐渐增大。
2.4 微观腐蚀形貌与腐蚀产物组成
由图3和表3可以看出:在未添加单质硫腐蚀6 d条件下,825合金表面光滑,仍可见加工痕迹,几乎未被腐蚀,腐蚀产物极少,腐蚀产物中的硫含量极低,碳、氧含量也较低,判断表面形成FeCO3产物膜[15-16];在添加单质硫条件下,随着腐蚀时间的延长,合金表面腐蚀产物增多,腐蚀产物中碳、氧、硫含量均增加,铁、铬、镍含量均降低,判断腐蚀产物主要为FeCO3与FeS[17-18]。与未添加单质硫腐蚀6 d时相比,添加单质硫腐蚀6 d时合金表面的腐蚀产物明显增多。
工况 质量分数/% C O S Cr Fe Ni Ti Cu 1 5.71 0.91 0.28 21.72 29.93 38.66 0.99 1.80 2 6.52 0.83 0.92 21.09 30.33 37.66 0.83 1.82 3 7.63 1.36 1.99 20.74 29.78 36.15 0.80 1.55 4 8.02 3.28 3.40 20.69 27.85 34.46 0.87 1.43 5 9.57 4.67 4.52 20.09 24.75 34.32 0.68 1.40 由图4可见,在添加单质硫腐蚀12 d条件下,825合金表面呈现出2种腐蚀形貌,一部分表面较平整,另一部分表面破裂且存在腐蚀产物的堆积。碳元素和氧元素的分布规律一致,结合铁元素的分布判断腐蚀产物为FeCO3。结合铁元素与硫元素的分布可知,表面破裂区域的FeS腐蚀产物膜发生剥落,导致硫元素继续向内部沉积并富集,从而加剧了腐蚀[19-20]。当温度高于单质硫熔点(120 ℃)时,合金表面的单质硫极易发生歧化反应生成H2S与H2SO4,产生大量H+造成局部酸化,使钝化膜溶解;生成的S2−可与Cl−及OH−竞争吸附于部分氧空位处,并逐渐在钝化膜表层形成金属硫化物FeS,同时S2−借助空位迁移扩散到钝化膜内层,降低钝化膜的完整性,并形成点蚀核。随着腐蚀时间的延长,基体与腐蚀介质接触的时间延长,导致腐蚀区域扩大,从而形成局部腐蚀坑[21-22]。综上,在含单质硫条件下,825合金的局部腐蚀严重,因此在实际应用中,建议使用溶硫剂等措施来增加825合金的安全服役寿命。
3. 结论
(1)在132 ℃、H2S分压4.8 MPa、CO2分压1.6 MPa、氯离子质量浓度42 750 mg·L−1的模拟地层水环境中,825合金几乎不发生腐蚀,但添加单质硫后,825合金发生了严重的局部腐蚀,且随腐蚀时间由3 d延长至12 d,腐蚀程度加剧,局部腐蚀坑面积增大,腐蚀坑最大深度由7.95 μm增大到48.29 μm。
(2)添加单质硫腐蚀6 d时825合金的腐蚀速率相比未添加单质硫腐蚀6 d时增大8.56倍,且随着腐蚀时间的延长,腐蚀速率逐渐增大。在不含单质硫条件下合金表面腐蚀产物极少,主要为FeCO3,在含单质硫条件下,随着腐蚀时间的延长,表面腐蚀产物增多,主要为FeCO3与FeS。在高于单质硫熔点(120 ℃)的高温条件下,单质硫发生歧化反应产生H+和S2−,使825合金表面腐蚀产物膜破裂,从而加剧局部腐蚀,降低了825合金的耐腐蚀性能。
-
表 1 母材及焊接材料的化学成分
Table 1 Chemical composition of base metal and welding material
材料 质量分数/% C Mn Si Cr Ni Mo S P 母材 0.030 1.00 0.60 12.00~13.50 3.80~5.00 0.40~1.00 0.008 0.028 焊接材料 0.037 0.80 0.45 12.32 4.17 0.62 0.010 0.025 -
[1] 张洪生,付晓虎,张苏星.ZG04Cr13Ni4Mo马氏体不锈钢力学性能研究[J].一重技术,2018(1):43-47. ZHANG H S ,FU X H ,ZHANG S X. Mechanical property test of ZG04Cr13Ni4Mo martensitic stainless steel[J]. CFHI Technology,2018(1):43-47.
[2] YANG T ,XUE S ,ZHENG L X ,et al. Crack investigation of martensitic stainless steel turbine blade in thermal power plant[J]. Engineering Failure Analysis,2021,127:105553. [3] 王治宇,许海刚,宋红梅.04Cr13Ni5Mo超级马氏体不锈钢焊接性能研究[J].宝钢技术,2016(4):21-25. WANG Z Y ,XU H G ,SONG H M. Research on weldability of super martensitic stainless steel 04Cr13Ni5Mo[J]. Baosteel Technology,2016(4):21-25.
[4] 史顺望,刘波,穆磊,等.焊后低温热处理对马氏体不锈钢组织和性能的影响[J].金属热处理,2020,45(12):136-139. SHI S W ,LIU B ,MU L ,et al. Effect of low temperature heat treatment after welding on microstructure and properties of martensitic stainless steel[J]. Heat Treatment of Metals,2020,45(12):136-139.
[5] 李照国,王珂,纪显彬,等.回火温度对00Cr13Ni5Mo超级马氏体不锈钢组织及性能的影响[J].金属热处理,2021,46(5):95-99. LI Z G ,WANG K ,JI X B ,et al. Effect of tempering temperature on microstructure and properties of 00Cr13Ni5Mo super martensitic stainless steel[J]. Heat Treatment of Metals,2021,46(5):95-99.
[6] LIU W J ,LI J ,LI S H ,et al. Effect of nitrogen on the hot deformation behavior of 0.4C–13Cr martensitic stainless steel[J]. Steel Research International,2021,92(8):2100020. [7] 陈裕川.新型超级马氏体不锈钢的焊接[J].现代焊接,2010(2):14-20. CHEN Y C. Welding of new super martensitic stainless steel[J]. Modern Welding,2010(2):14-20.
[8] 于丽萍,刘晓禹.热处理对0Cr13Ni4Mo马氏体不锈钢组织和性能的影响[J].一重技术,2005(4):29-30. YU L P ,LIU X Y. Effect of heat treatment on microstructure and properties of 0Cr13Ni4Mo martensitic stainless steel[J]. CFHI Technology,2005(4):29-30.
[9] 周彤,卫心宏.ZG06Cr13Ni4Mo马氏体不锈钢叶片热处理工艺研究[J].铸造设备与工艺,2017(3):32-34. ZHOU T ,WEI X H. Heat treatment process of ZG06Cr13Ni4Mo martensitic stainless steel blade[J]. Foundry Equipment & Technology,2017(3):32-34.
[10] 董方奇,杨百勋,李益民,等.超级马氏体不锈钢00Cr13Ni4Mo力学性能与抗磨蚀性能试验[J].热力发电,2016,45(3):110-115. DONG F Q ,YANG B X ,LI Y M ,et al. Mechanical properties and anti-abrasion performance of 00Cr13Ni4Mo super martensitic stainless steel[J]. Thermal Power Generation,2016,45(3):110-115.
[11] 曹阳.超级马氏体不锈钢04Cr13Ni5Mo焊接性能研究[J].四川水力发电,2021,40(5):59-61. CAO Y. Study on the welding performance of super martensite stainless steel 04Cr13Ni5Mo[J]. Sichuan Water Power,2021,40(5):59-61.
[12] WANG G F ,JIAO S J ,CHEN Bo ,et al. Research progress on impact toughness of supermartensitic stainless steel[J]. Welding & Joining,2024(5):51-57. [13] 郭宏侠,陆善平.0Cr13Ni5Mo类低碳马氏体不锈钢焊接技术[J].焊接技术,2010,39(11):22-24. GUO H X ,LU S P. Welding technology of 0Cr13Ni5Mo low carbon martensitic stainless steel[J]. Welding Technology,2010,39(11):22-24.
[14] AMRAEI M ,AHOLA A ,AFKHAMI S ,et al. Effects of heat input on the mechanical properties of butt-welded high and ultra-high strength steels[J]. Engineering Structures,2019,198:109460. [15] 杨晶晶水轮机用0Cr13Ni5Mo不锈钢焊接工艺研究成都西南交通大学2018杨晶晶.水轮机用0Cr13Ni5Mo不锈钢焊接工艺研究[D].成都:西南交通大学,2018. YANG J JStudy on 0Cr13Ni5Mo stainless steel welding process for hydroturbineChengduSouthwest Jiaotong University2018YANG J J. Study on 0Cr13Ni5Mo stainless steel welding process for hydroturbine[D]. Chengdu:Southwest Jiaotong University,2018.
[16] 蒋勇,郭栖利,梁晨,等.焊接热输入对低碳贝氏体金属粉芯焊丝(CHT120CK4)熔敷金属组织和力学性能的影响[J].电焊机,2021,51(6):32-40. JIANG Y ,GUO X L ,LIANG C ,et al. Effect of welding heat input on microstructure and mechanical properties of deposited metal for a low carbon bainite metal powder cored wire (CHT120CK4)[J]. Electric Welding Machine,2021,51(6):32-40.
[17] 侯树成,周勇,刘云,等.连续油管管材及焊接热影响区显微组织分析[J].焊管,2019,42(3):16-22. HOU S C ,ZHOU Y ,LIU Y ,et al. Microstructure analysis of coiled-tubing pipe and welding HAZ[J]. Welded Pipe and Tube,2019,42(3):16-22.
[18] 周昶,黄乐庆,韩承良,等.焊接热输入对S420ML钢焊接接头组织及断裂韧性的影响[J].上海金属,2023,45(6):12-18. ZHOU C ,HUANG L Q ,HAN C L ,et al. Effect of welding heat input on microstructure and fracture toughness of welded joint of S420ML steel[J]. Shanghai Metals,2023,45(6):12-18.
[19] 徐春华,谢淑贤,王海瑞,等.焊接热输入对超低碳贝氏体钢热影响区CGHAZ组织性能影响[J].电焊机,2021,51(2):37-40. XU C H ,XIE S X ,WANG H R ,et al. Effect of welding heat input on microstructure and properties of CGHAZ of ultra-low carbon bainitic steel[J]. Electric Welding Machine,2021,51(2):37-40.