高级检索
    李瑞阳, 郑战光, 孙经雨, 钱桂安, 蔺跃龙, 武锐, 刘通. 大变形下固体推进剂黏弹性本构参数的识别[J]. 机械工程材料, 2024, 48(9): 112-118. DOI: 10.11973/jxgccl230273
    引用本文: 李瑞阳, 郑战光, 孙经雨, 钱桂安, 蔺跃龙, 武锐, 刘通. 大变形下固体推进剂黏弹性本构参数的识别[J]. 机械工程材料, 2024, 48(9): 112-118. DOI: 10.11973/jxgccl230273
    LI Ruiyang, ZHENG Zhanguang, SUN Jingyu, QIAN Guian, LIN Yuelong, WU Rui, LIU Tong. Identification of Viscoelastic Constitutive Parameters for Solid Propellant under Large Deformation[J]. Materials and Mechanical Engineering, 2024, 48(9): 112-118. DOI: 10.11973/jxgccl230273
    Citation: LI Ruiyang, ZHENG Zhanguang, SUN Jingyu, QIAN Guian, LIN Yuelong, WU Rui, LIU Tong. Identification of Viscoelastic Constitutive Parameters for Solid Propellant under Large Deformation[J]. Materials and Mechanical Engineering, 2024, 48(9): 112-118. DOI: 10.11973/jxgccl230273

    大变形下固体推进剂黏弹性本构参数的识别

    Identification of Viscoelastic Constitutive Parameters for Solid Propellant under Large Deformation

    • 摘要: 在ZWT非线性黏弹性本构模型中添加额外的Maxwell单元,建立了非线性广义Maxwell模型(NLGMM)并进行数值离散化,基于Nelder-Mead单纯形算法,使用端羟基聚醚(HTPE)固体推进剂在不同等位移速率下的拉伸试验数据对本构参数进行优化和验证,分析了使用工程应变速率和真应变速率对真应力计算结果的差别。结果表明:经数值离散和参数优化后,建立的NLGMM可以很好地描述HTPE固体推进剂的力学行为,对真应力的计算结果与试验结果的最大相对误差不超过6%。当HTPE固体推进剂发生的变形量较小(真应变不大于0.1)时,使用工程应变速率计算的真应力与使用真应变速率计算结果之间的相对误差不大于5%,此时可忽略变形导致的非线性效应,使用工程应力-工程应变和工程应变速率进行计算来确定NLGMM材料参数;当HTPE固体推进剂发生较大变形(真应变不小于0.4)时,使用工程应变速率计算的真应力为使用真应变速率计算结果的1.33倍及以上,材料变形导致的非线性效应不可忽略,应使用真应力-真应变和真应变速率进行计算来确定NLGMM的材料参数。

       

      Abstract: In the ZWT nonlinear viscoelastic constitutive model, additional Maxwell elements were incorporated to establish a nonlinear generalized Maxwell model (NLGMM), and the NLGMM was numerically discretized. Based on the Nelder-Mead simplex algorithm, the constitutive parameters were optimized and validated with tensile test data of hydroxyl terminated polyethe (HTPE) solid propellant at different constant displacement rates. The differences in true stress calculation with engineering strain rates and true strain rates were analyzed. The results show that after numerical discretization and parameter optimization, the established NLGMM could effectively describe mechanical behavior of HTPE solid propellant. The maximum relative error between the calculated true stress and the test results was not higher than 6%. When the deformation of HTPE solid propellant was small (the true strain was not greater than 0.1), the relative error between the true stress calculation with engineering strain rates and that with true strain rates did not exceed 5%, indicating that the nonlinear effects caused by material deformation could be neglected and the material parameters of NLGMM could be calculated with engineering stress-engineering strains and engineering strain rates. When HTPE solid propellant underwent large deformation (the true strain was not less than 0.4), the true stress calculation with engineering strain rates was not less than 1.33 times that with true strain rates, and the nonlinear effects caused by material deformation could not be ignored. The material parameters of NLGMM should be calculated with true stress-true strains and true strain rates.

       

    /

    返回文章
    返回