• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

阻垢剂和CO2对J55钢在油田模拟采出水中腐蚀行为的影响

张立原, 宋洋, 胡天宝, 袁梦瑶, 王映超, 王锴, 刘黎明, 王叙乔, 李斌, 丁恺, 魏巍

张立原, 宋洋, 胡天宝, 袁梦瑶, 王映超, 王锴, 刘黎明, 王叙乔, 李斌, 丁恺, 魏巍. 阻垢剂和CO2对J55钢在油田模拟采出水中腐蚀行为的影响[J]. 机械工程材料, 2024, 48(11): 95-102. DOI: 10.11973/jxgccl230276
引用本文: 张立原, 宋洋, 胡天宝, 袁梦瑶, 王映超, 王锴, 刘黎明, 王叙乔, 李斌, 丁恺, 魏巍. 阻垢剂和CO2对J55钢在油田模拟采出水中腐蚀行为的影响[J]. 机械工程材料, 2024, 48(11): 95-102. DOI: 10.11973/jxgccl230276
ZHANG Liyuan, SONG Yang, HU Tianbao, YUAN Mengyao, WANG Yingchao, WANG Kai, LIU Liming, WANG Xuqiao, LI Bin, DING Kai, WEI Wei. Effect of Scale Inhibitor and CO2 on Corrosion Behavior of J55 Steel in Oil Field Simulated Produced Water[J]. Materials and Mechanical Engineering, 2024, 48(11): 95-102. DOI: 10.11973/jxgccl230276
Citation: ZHANG Liyuan, SONG Yang, HU Tianbao, YUAN Mengyao, WANG Yingchao, WANG Kai, LIU Liming, WANG Xuqiao, LI Bin, DING Kai, WEI Wei. Effect of Scale Inhibitor and CO2 on Corrosion Behavior of J55 Steel in Oil Field Simulated Produced Water[J]. Materials and Mechanical Engineering, 2024, 48(11): 95-102. DOI: 10.11973/jxgccl230276

阻垢剂和CO2对J55钢在油田模拟采出水中腐蚀行为的影响

详细信息
    作者简介:

    张立原(1990—),男,陕西西安人,工程师,硕士

  • 中图分类号: TG174.42

Effect of Scale Inhibitor and CO2 on Corrosion Behavior of J55 Steel in Oil Field Simulated Produced Water

  • 摘要:

    通过浸泡腐蚀和电化学腐蚀测试,研究了J55钢在不含阻垢剂和CO2、只含CO2、只含阻垢剂和同时含阻垢剂和CO2条件下的油田模拟采出水中的均匀腐蚀和点腐蚀行为。结果表明:在不含阻垢剂和CO2条件下,J55钢的均匀腐蚀速率较低,最大点蚀速率最高;相较于不含阻垢剂和CO2条件,只含CO2条件下该钢的均匀腐蚀速率升高,但最大点蚀速率降低,只含阻垢剂条件下该钢的均匀腐蚀速率和最大点蚀速率均降低;在同时含CO2和阻垢剂条件下,该钢的均匀腐蚀速率最高,最大点蚀速率较不含阻垢剂和CO2条件有所降低。当体系中存在CO2时,该钢表面主要生成CaCO3或CaMg(CO32结垢物。同时含CO2和阻垢剂条件下,阻垢剂能抑制结垢过程,改变腐蚀产物膜和结垢物的结构,失去对基体的保护作用。

    Abstract:

    The uniform corrosion and pitting corrosion behavior of J55 steel was studied in oil field simulated produced water without scale inhibitor and CO2, with CO2, with scale inhibitor and with both scale inhibitor and CO2 through immersion corrosion and electrochemical corrosion tests. The results show that under the condition without scale inhibitor and CO2, the uniform corrosion rate of J55 steel was relatively low, and the maximum pitting corrosion rate was the highest. Compared to those without scale inhibitor and CO2, the uniform corrosion rate of the steel increased and the maximum pitting corrosion rate decreased under the condition with CO2, and both decreased under the condition with scale inhibitor. Under the condition with both CO2 and scale inhibitor, the uniform corrosion rate of the steel was the highest, and the maximum pitting corrosion rate was lower than that without scale inhibitor and CO2. When CO2 was present in the system, CaCO3 or CaMg(CO3)2 scaling products were mainly formed on the surface of the steel. Under the condition with both CO2 and scale inhibitor, scale inhibitor would inhibit the scaling process, change the structure of corrosion products and scale deposits, and lost the protective effect on the matrix.

  • J55钢作为油套管材料,被广泛用于油气田的钻井过程和完井后对井壁的支撑中。在油气田开发过程中,大量CO2溶于水后会对油套管材料造成严重腐蚀[1-4],同时会与地层水中的Ca2+、Mg2+、Ba2+、Sr2+等金属离子结合形成结垢物[5],造成井下设备、井筒、生产管、泵、分离器等严重堵塞,导致产量下降、地层损害、成本增加甚至关井[6-9]。对于腐蚀和结垢的控制,目前最普遍的做法是添加缓蚀剂和阻垢剂,这种做法操作简单、成本低且效果显著[10-11]。此外,腐蚀后材料表面形成的致密且厚的腐蚀产物,如含CO2的地层水溶液中腐蚀生成的致密FeCO3可以防止材料进一步腐蚀[12-14]。李金灵等[15]综述了J55油套管钢腐蚀的研究进展和影响该钢腐蚀的关键因素,发现腐蚀产物膜的成分与结构因腐蚀环境不同而各异。薛瑞[16]研究发现,高含量CO2是导致南海某油田生产系统结垢的主要原因,CO2溶于水与Ca2+、Mg2+等结合形成结垢物。CHEN等[17]研究发现,阻垢剂具有良好的缓蚀性能和分散能力,通过螯合作用、晶格畸变和分散作用可以吸附结垢颗粒。虽然阻垢剂本身不会腐蚀金属表面[18],但腐蚀产物膜是否会受阻垢剂影响从而丧失对材料的保护作用尚未明确。

    为此,作者通过浸泡腐蚀、表面分析技术和电化学腐蚀测试,研究了J55钢在含有/不含阻垢剂和CO2条件下的油田模拟采出水中的腐蚀行为,以期为该钢的现场应用提供依据。

    试验材料为J55钢,取自油田现场的新套管,其化学成分(质量分数/%)为0.32C,0.25Si,1.45Mn,0.014P,0.006S,0.01Ni,0.02Cr,余Fe。试验用阻垢剂来自长庆油田,型号为ZG。

    在套管上加工出尺寸为50 mm×10 mm×3 mm的试样,采用320#,600#,800#,1200#和2000#SiC砂纸逐级打磨,经丙酮清洗、乙醇脱水后,置于干燥皿中干燥2 h,取出,采用BSA 124S型电子天平(精度为0.1 mg)称取质量。采用TFCZ-25型磁力驱动高压釜进行腐蚀试验,釜中倒入2 L模拟采出水,其基础组成见表1,将试样浸泡于溶液中,用N2先除氧2 h,随后将釜内温度升至60 ℃后通入N2至总压力为15.0 MPa,腐蚀周期为168 h;该试验条件为不含阻垢剂和CO2的空白试验条件。在空白试验条件基础上,设置只含阻垢剂、只含CO2、同时含有阻垢剂和CO2等3种试验条件进行试验,阻垢剂质量分数为0.01%,CO2在釜内温度升至60 ℃后通入,至CO2分压为1.0 MPa时,再通入N2补压至15.0 MPa。每种试验条件下设置5个平行试样。

    表  1  模拟采出水的基础组成
    Table  1.  Basic components of simulated produced water
    离子K+Na+Ca2+Mg2+SO42−HCO3Cl
    质量浓度/(mg·L−1)371.0036 1004 7601 082.5844.6267.6373 077.3
    下载: 导出CSV 
    | 显示表格

    将10 g六次甲基四胺加入到100 mL盐酸中,配制成1 L的清洗液。用清洗液清洗去除试样表面产物(包括腐蚀产物和结垢物),用乙醇脱水后,置于干燥皿中干燥2 h,取出,采用电子天平(精确至0.1 mg)称取质量,计算均匀腐蚀速率,计算公式如下:

    (1)

    式中:vc为均匀腐蚀速率,mm·a−1m为试验前试样的质量,g;m1为腐蚀并去除表面产物后试样的质量,g;S为试样表面积,cm2ρ为材料密度,g·cm−3t为试验周期,h。

    采用XRD-6000型X射线衍射仪(XRD)对试样表面产物进行物相分析,扫描范围为10°~90°,扫描速率为10 (°)·min−1。采用JSM-IT500LA型扫描电子显微镜(SEM)进行微观形貌观察。将试样截面先用镶嵌粉镶嵌,用320#,600#,800#,1200#和2000#SiC砂纸逐级打磨并用绒布抛光后,采用SEM附带的能谱仪(EDS)对点蚀坑产物进行成分分析。采用LSM-800型激光共聚焦显微镜测量点蚀深度,计算最大点蚀速率,计算公式如下:

    (2)

    式中:vp为最大点蚀速率,mm·a−1h为试样表面最大点蚀深度,mm。

    采用CS 310型电化学工作站进行电化学腐蚀测试,采用三电极体系,工作电极为未经腐蚀的试样,工作面积为1.13 cm2,参比电极为饱和甘汞电极(SCE),辅助电极为惰性石墨电极,腐蚀介质为含有和不含阻垢剂的模拟采出水,N2除氧1 h,水浴加热至60 ℃后开始测试开路电位,待开路电位稳定后进行交流阻抗和循环极化曲线测试(不含CO2条件)。在除氧、加热结束后,持续通入1 h CO2使溶液中CO2达到饱和后进行测试,此为含CO2条件下的试验步骤。交流阻抗测试采用幅值为10 mV的正弦波,测试频率为10 000~0.01 Hz。循环极化曲线扫描范围(相对于开路电位)为−0.2~0.4 V,扫描速率为0.2 mV·s−1,不含阻垢剂和CO2试验条件下在阳极电流密度达到10 mA·cm−2时开始反向扫描,其余试验条件下在阳极电流密度达到40 mA·cm−2时开始反向扫描。使用武汉科思特仪器有限公司开发的Cor Show和Z Simp Win软件对循环极化曲线和交流阻抗谱进行拟合。

    在不含阻垢剂和CO2条件、只含CO2条件、只含阻垢剂条件以及同时含有阻垢剂和CO2条件下,试样的均匀腐蚀速率分别为0.042 1,0.717 4,0.018 3,0.916 4 mm·a−1,最大点蚀速率分别为2.014 8,1.215 5,0.271 6,0.651 5 mm·a−1。不含阻垢剂和CO2条件下,试样的均匀腐蚀速率较低,但最大点蚀速率最高,这主要是因为体系中的Cl对点蚀影响较大,其离子半径小,容易到达试样表面,与铁反应形成可溶性化合物,并且水解产生大量H+,H+的存在加速了铁的腐蚀,从而导致点蚀[19];相较于不含阻垢剂和CO2条件,只含CO2条件下试样的均匀腐蚀速率急剧加快,最大点蚀速率减小,这是因为在通入CO2后,体系中HCO3和CO32−浓度增加,CO2均匀腐蚀倾向增加,与Cl的点蚀行为产生竞争,致使点蚀倾向稍有降低;在只含阻垢剂条件下,试样的均匀腐蚀速率和最大点腐蚀速率均降至最低,在该体系中添加CO2时,试样的均匀腐蚀速率上升至最高,最大点蚀速率较不含阻垢剂和CO2条件有所降低。同时存在阻垢剂和CO2时,阻垢剂溶解后与Fe2+、Ca2+产生可溶性络合物,使得具有保护性的FeCO3腐蚀产物膜和CaCO3结垢物生成量减少[19],同时体系中HCO3和CO32−浓度增加,所以此时试样的均匀腐蚀速率最高,最大点蚀速率稍低。

    图1可知:在不含阻垢剂和CO2条件下,试样表面产物杂乱,呈不定型态,可能是因为体系中不含CO2[20]所致,由于无CO2,体系中无法形成较多且均匀分布的腐蚀产物,XRD结果显示该腐蚀产物为Fe2O3,且有CaCO3结垢物附着在表面。在只含CO2条件下,试样表面产物呈内外双层结构,内层产物较厚,并因脱水发生龟裂[21],外层以棉球状结构结合在内层上,XRD结果显示表面产物主要为CaMg(CO32结垢物。只含阻垢剂条件下,试样表面光滑,产物较少,XRD结果显示该产物主要为CaMg(CO32结垢物。同时含有阻垢剂和CO2条件下,试样表面产物疏松、裂纹多,XRD检测到微弱的CaCO3衍射峰。在该条件下,阻垢剂溶解后与Ca2+形成可溶性络合物,导致结垢物[CaCO3,CaMg(CO32]减少,并且阻垢剂还可能会改变CaCO3的晶体尺寸和形态[14],这也导致了此试验条件下试样的均匀腐蚀速率最高。

    图  1  不同试验条件下腐蚀后试样表面产物的SEM形貌及XRD谱
    Figure  1.  SEM morphology (a–d) and XRD patterns (e) of surface products of samples corroded under different test conditions: (a) not containing scale inhibitor and CO2; (b) containing CO2; (c) containing scale inhibitor and (d) containing scale inhibitor and CO2

    图2可见,不含阻垢剂和CO2条件下,点蚀坑内A区与B区元素含量明显不同:A区碳、钙、氧元素含量较高,结合XRD分析为CaCO3;在B区中,随着点蚀深度的增加,钙元素含量逐渐减少,铁元素含量逐渐增加,碳、氧元素含量基本不变,碳元素含量相对较少,结合XRD推测B区存在Fe2O3。C区主要由铁元素组成。在只含CO2条件下,点蚀坑A区各元素含量随深度的增加变化不大,主要由碳、氧、钙及铁元素组成;含CO2时因CO2溶解,采出水呈酸性,并且采出水中含有Cl,Cl促进试样基体铁溶解生成Fe2+,Fe2+向点蚀坑A区迁移与CO32−结合生成起保护作用的FeCO3,因此点蚀坑内可能含有FeCO3[22]。B区主要由铁元素组成。在只含阻垢剂条件下,点蚀坑A区主要由碳元素组成,B区碳元素含量下降,氧、钙、铁及硅元素含量增加,推测应由CaCO3和FeCO3组成,硅元素可能是制样过程引入。C区主要由铁元素组成。在同时含阻垢剂和CO2条件下,点蚀坑A区各元素含量随深度的增加变化不大,主要由碳、氧、铁元素组成,推测存在FeCO3[23],B区主要由铁元素组成。同时含有阻垢剂和CO2条件下的产物膜呈疏松絮状,无法保护基体[24],基体与溶液交换电子的表面积较大,均匀腐蚀速率相对于其他试验条件下升高。

    图  2  不同试验条件下腐蚀后试样表面点蚀坑的EDS线扫描位置及对应结果
    Figure  2.  EDS line scanning positions (a, c, e, g) and corresponding results (b, d, f, h) of surface corrosion pit of samples corroded under different test conditions: (a–b) not containing scale inhibitor and CO2; (c–d) containing CO2; (e–f) containing scale inhibitor and (g–h) containing scale inhibitor and CO2

    图3表2可知,在4种试验条件下,试样的循环极化曲线正扫区域均有明显的Tafel直线段,拟合得到的阴极极化斜率均比阳极极化斜率高,表明试样的腐蚀受阴极反应控制。与不含阻垢剂和CO2条件相比,其他3种条件下的阴极和阳极极化斜率均增大,其中:只含CO2条件下的阴极极化斜率增大了近两倍,推测通入CO2能增强试样在该体系中的阴极反应,该增强原因是在电化学过程中CO2和/或其相关碳酸盐直接参与溶解反应[25],同时CO2与H2O反应生成H2CO3使阴极反应能得到更多的H+;只含阻垢剂条件下,试样阳极极化斜率的增大程度比阴极极化斜率更明显,且在极化正扫区出现钝化现象;同时含阻垢剂和CO2条件下,试样阳极极化斜率和阴极极化斜率的变化规律与只含阻垢剂条件相同,但极化曲线未有明显钝化区间。推测在只含阻垢剂条件下,阻垢剂吸附于基体表面形成了一层吸附膜,这种吸附膜也相当于保护膜[26],所以此条件下试样出现钝化现象,腐蚀速率低。在同时含阻垢剂和CO2条件下,CO2的存在降低了阻垢剂对基体的保护性,此时阻垢剂的主要作用在于阻碍结垢物晶体的生长[26],晶体细化后产物变得疏松,因此此条件下试样未出现钝化现象,腐蚀速率较高。只含阻垢剂条件下试样的自腐蚀电位最小,说明此条件下试样更易腐蚀,同时自腐蚀电流密度最小,说明此条件下试样的均匀腐蚀速率最低。

    图  3  不同试验条件下腐蚀时试样的循环极化曲线
    Figure  3.  Cyclic polarization curves of samples in corrosion under different test conditions: (a) not containing scale inhibitor and CO2; (b) containing CO2; (c) containing scale inhibitor and (d) containing scale inhibitor and CO2
    表  2  不同试验条件下腐蚀时试样的循环极化曲线拟合结果
    Table  2.  Fitting results of cyclic polarization curves of samples in corrosion under different test conditions
    试验条件自腐蚀电位/V自腐蚀电流密度/(A·cm−2)阳极极化斜率/mV阴极极化斜率/mV
    空白−0.748 91.834×10−631.13964.778
    只含CO2−0.715 23.222×10−551.607171.65
    只含阻垢剂−0.805 49.150×10−769.38676.148
    同时含阻垢剂和CO2−0.709 04.835×10−676.99297.893
    下载: 导出CSV 
    | 显示表格

    当回扫腐蚀电流密度大于正扫腐蚀电流密度时,循环极化曲线出现滞后环,此时材料会发生点蚀[27]。滞后环的大小代表了点蚀敏感性:滞后环面积越大,点蚀敏感性越大[28]。在不含阻垢剂和CO2条件以及只含CO2条件下,试样的循环极化曲线均未见明显滞后环,在只含阻垢剂以及同时含阻垢剂和CO2条件下均出现较大的滞后环。

    图4可知:在不含阻垢剂和CO2条件下,试样的阻抗半径较小,表明其腐蚀速率较高,并且试样存在高频和低频两个时间常数,高频区的容抗弧归因于双电层电容的充放电,低频区的容抗弧归因于点蚀形成阶段孔核的形成与生长;在只含CO2条件下,试样也出现了高频容抗弧与低频容抗弧,且两段容抗弧的响应均比不含阻垢剂和CO2条件下的频率更高,这归因于此条件下形成的产物膜会改变双电层电容,致使其对频率的响应发生变化;在只含阻垢剂条件下,试样出现单一的容抗弧,但具有最大的阻抗模值,表明此条件下试样的腐蚀速率较小;在同时含CO2和阻垢剂条件下,试样存在高频容抗弧与低频容抗弧两个时间常数,并出现Warburg阻抗,说明此过程中扩散过程会影响试样的腐蚀。

    图  4  不同试验条件下腐蚀时试样的电化学阻抗谱
    Figure  4.  Electrochemical impedance spectra of samples in corrosion under different test conditions: (a) Nyquist plot; (b) impedance mode-frequency plot and (c) phase angle-frequency plot

    (1)在只含CO2不含阻垢剂条件下,J55钢在模拟采出水中的均匀腐蚀速率相比于不含阻垢剂和CO2条件下增加,最大点蚀速率降低,表面产物具有双层结构,外层呈棉球状,内层较厚,表面有CaMg(CO32结垢物附着。

    (2)在只含阻垢剂不含CO2条件下,J55钢的均匀腐蚀速率和最大点蚀速率均最低,其表面光滑,产物较少,此时阻垢剂对基体具有保护作用。

    (3)同时含有阻垢剂和CO2条件下,J55钢的均匀腐蚀速率最高,最大点蚀速率较不含阻垢剂和CO2条件下有所降低,表面产物疏松、裂纹多,只含有少量CaCO3。在含CO2条件下,阻垢剂会抑制结垢过程,改变腐蚀产物和结垢物结构,失去对基体的保护作用。

  • 图  1   不同试验条件下腐蚀后试样表面产物的SEM形貌及XRD谱

    Figure  1.   SEM morphology (a–d) and XRD patterns (e) of surface products of samples corroded under different test conditions: (a) not containing scale inhibitor and CO2; (b) containing CO2; (c) containing scale inhibitor and (d) containing scale inhibitor and CO2

    图  2   不同试验条件下腐蚀后试样表面点蚀坑的EDS线扫描位置及对应结果

    Figure  2.   EDS line scanning positions (a, c, e, g) and corresponding results (b, d, f, h) of surface corrosion pit of samples corroded under different test conditions: (a–b) not containing scale inhibitor and CO2; (c–d) containing CO2; (e–f) containing scale inhibitor and (g–h) containing scale inhibitor and CO2

    图  3   不同试验条件下腐蚀时试样的循环极化曲线

    Figure  3.   Cyclic polarization curves of samples in corrosion under different test conditions: (a) not containing scale inhibitor and CO2; (b) containing CO2; (c) containing scale inhibitor and (d) containing scale inhibitor and CO2

    图  4   不同试验条件下腐蚀时试样的电化学阻抗谱

    Figure  4.   Electrochemical impedance spectra of samples in corrosion under different test conditions: (a) Nyquist plot; (b) impedance mode-frequency plot and (c) phase angle-frequency plot

    表  1   模拟采出水的基础组成

    Table  1   Basic components of simulated produced water

    离子K+Na+Ca2+Mg2+SO42−HCO3Cl
    质量浓度/(mg·L−1)371.0036 1004 7601 082.5844.6267.6373 077.3
    下载: 导出CSV

    表  2   不同试验条件下腐蚀时试样的循环极化曲线拟合结果

    Table  2   Fitting results of cyclic polarization curves of samples in corrosion under different test conditions

    试验条件自腐蚀电位/V自腐蚀电流密度/(A·cm−2)阳极极化斜率/mV阴极极化斜率/mV
    空白−0.748 91.834×10−631.13964.778
    只含CO2−0.715 23.222×10−551.607171.65
    只含阻垢剂−0.805 49.150×10−769.38676.148
    同时含阻垢剂和CO2−0.709 04.835×10−676.99297.893
    下载: 导出CSV
  • [1] LIU X M ,JING J J ,FU Q ,et al. Aminoethanesulfonic acid-based blends for inhibition of J55 steel corrosion in simulated oilfield pickling fluid[J]. International Journal of Electrochemical Science,2019,14(9):8819-8835.
    [2] SINGH A ,TALHA M ,XU X H ,et al. Heterocyclic corrosion inhibitors for J55 steel in a sweet corrosive medium[J]. ACS Omega,2017,2(11):8177-8186.
    [3] IROHA N B ,DUEKE-EZE C U ,JAMES A O ,et al. Newly synthesized N-(5-nitro-2-hydroxybenzylidene)pyridine-4-amine as a high-potential inhibitor for pipeline steel corrosion in hydrochloric acid medium[J]. Egyptian Journal of Petroleum,2021,30(2):55-61.
    [4] LI J K ,SUN C ,SHUANG S ,et al. Investigation on the flow-induced corrosion and degradation behavior of underground J55 pipe in a water production well in the Athabasca oil sands reservoir[J]. Journal of Petroleum Science and Engineering,2019,182:106325.
    [5] AZIZI J ,SHADIZADEH S R ,KHAKSAR MANSHAD A ,et al. A dynamic method for experimental assessment of scale inhibitor efficiency in oil recovery process by water flooding[J]. Petroleum,2019,5(3):303-314.
    [6] RUAN G D ,KAN A T ,TOMSON M B ,et al. Facile one-pot synthesis of metal-phosphonate colloidal scale inhibitor:Synthesis and laboratory evaluation[J]. Fuel,2020,282:118855.
    [7] GAO S J ,DAI C ,WANG X ,et al. High return performance of calcium phosphonate (Ca-DTPMP)colloidal inhibitors for squeeze treatment in shale formations[J]. Frontiers in Materials,2020,7:285.
    [8] LIU Y ,DAI Z Y ,KAN A T ,et al. Investigation of sorptive interaction between phosphonate inhibitor and barium sulfate for oilfield scale control[J]. Journal of Petroleum Science and Engineering,2022,208:109425.
    [9] ISHTIAQ U ,MUHSAN A S ,ROZALI A S ,et al. Graphene oxide/carbon nanotubes nanocoating for improved scale inhibitor adsorption ability onto rock formation[J]. Journal of Petroleum Exploration and Production Technology,2020,10(1):149-157.
    [10] 郝玉,陈证旭. 阻垢剂作用机理介绍及应用前景[J]. 化学工程师,2020,34(11):58-61.

    HAO Y ,CHEN Z X. Mechanism of scale inhibitor and its application prospect[J]. Chemical Engineer,2020,34(11):58-61.

    [11] LI S L ,QU Q ,LI L ,et al. Bacillus cereus s-EPS as a dual bio-functional corrosion and scale inhibitor in artificial seawater[J]. Water Research,2019,166:115094.
    [12] GALLEGO M ,SAN ROMÁN J ,BIANCHI G L ,et al. Influence of fluid flow in microbiological corrosion failures in oil field injector well tubing[J]. Engineering Failure Analysis,2021,128:105603.
    [13] HOU B S ,ZHANG Q H ,LI Y Y ,et al. Influence of corrosion products on the inhibition effect of pyrimidine derivative for the corrosion of carbon steel under supercritical CO2 conditions[J]. Corrosion Science,2020,166:108442.
    [14] HUA Y ,MOHAMMED S ,BARKER R ,et al. Comparisons of corrosion behaviour for X65 and low Cr steels in high pressure CO2-saturated brine[J]. Journal of Materials Science & Technology,2020,41:21-32.
    [15] 李金灵,朱世东,屈撑囤,等. J55油套管钢腐蚀影响因素研究[J]. 腐蚀科学与防护技术,2014,26(1):60-64.

    LI J L ,ZHU S D ,QU C D ,et al. Research on factors influencing corrosion of J55 oil casing steel[J]. Corrosion Science and Protection Technology,2014,26(1):60-64.

    [16] 薛瑞,殷硕,郝兰锁. 海上油田生产系统的腐蚀[J]. 腐蚀与防护,2017,38(8):637-641.

    XUE R ,YIN S ,HAO L S. Corrosion of production systems for offshore oilfield[J]. Corrosion & Protection,2017,38(8):637-641.

    [17] CHEN Y ,CHEN X S ,LIANG Y N. Synthesis of polyaspartic acid/graphene oxide grafted copolymer and evaluation of scale inhibition and dispersion performance[J]. Diamond and Related Materials,2020,108:107949.
    [18] 赵雪会,刘君林,曾瑞华,等. 饱和CO2溶液中Cl浓度对马氏体不锈钢应力腐蚀敏感性的影响[J]. 材料保护,2021,54(1):36-44.

    ZHAO X H ,LIU J L ,ZENG R H ,et al. Effect of Cl concentration on the stress corrosion sensitivity of martensitic stainless steel in saturated CO2 solution[J]. Materials Protection,2021,54(1):36-44.

    [19] ZHAO J S ,JU Y J ,TANG M R ,et al. Experimental study on the corrosion behavior of produced fluid on J55 steel during CO2 flooding[J]. Key Engineering Materials,2018,773:179-183.
    [20] LIU Z G ,GAO X H ,DU L X ,et al. Comparison of corrosion mechanism of low-alloy pipeline steel used for flexible pipes at vapor-saturated CO2 and CO2-saturated brine conditions[J]. Materials and Corrosion,2017,68(11):1200-1211.
    [21] PALUMBO G ,GÓRNY M ,BANAŚ J. Corrosion inhibition of pipeline carbon steel (N80) in CO2-saturated chloride (0.5 M of KCl) solution using gum arabic as a possible environmentally friendly corrosion inhibitor for shale gas industry[J]. Journal of Materials Engineering and Performance,2019,28(10):6458-6470.
    [22] 张浩,杜楠,周文杰,等. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报,2020,40(6):517-522.

    ZHANG H ,DU N ,ZHOU W J ,et al. Effect of Fe3+ on pitting corrosion of stainless steel in simulated seawater[J]. Journal of Chinese Society for Corrosion and Protection,2020,40(6):517-522.

    [23] 屈晓田. X射线衍射物相分析的一种简单方法[J]. 山西大学学报(自然科学版),1998,21(2):132-136.

    Qu X T. A simple method for X-ray diffraction phase analysis[J]. Journal of Shanxi University (Natural Science Edition),1998,21(2):132-136.

    [24] KAHYARIAN A ,BROWN B ,NESIC S. Electrochemistry of CO2 corrosion of mild steel:Effect of CO2 on iron dissolution reaction[J]. Corrosion Science,2017,129:146-151.
    [25] ABD-EL-KHALEK D E ,HASSAN H H A M ,RAMADAN S R. Water-soluble sulfonated polyaniline as multifunctional scaling inhibitor for crystallization control in industrial applications[J]. Chemical Engineering Research and Design,2021,169:135-141.
    [26] 王长罡,董俊华,柯伟,等. HCO3,SO42−和C1混合体系中Cu点蚀行为的研究[J]. 金属学报,2013,49(2):207-213.

    WANG C G ,DONG J H ,KE W ,et al. Investigation on pitting corrosion behavior of copper in the mixed solution of HCO3−,SO42− and Cl [J]. Acta Metallurgica Sinica,2013,49(2):207-213.

    [27] 王长罡,董俊华,柯伟,等. HCO3和SO42−对Cu点蚀行为的影响[J]. 金属学报,2012,48(1):85-93.

    WANG C G ,DONG J H ,KE W ,et al. Effects of HCO3 and SO42− on the pitting corrosion behavior of Cu[J]. Acta Metallurgica Sinica,2012,48(1):85-93.

    [28] ZHOU Y Q ,ENGELBERG D L. Time-lapse observation of pitting corrosion in ferritic stainless steel under bipolar electrochemistry control[J]. Journal of Electroanalytical Chemistry,2021,899:115599.
图(4)  /  表(2)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  4
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-13
  • 修回日期:  2024-05-30
  • 刊出日期:  2024-11-19

目录

/

返回文章
返回