Effect of Sintering Temperature on Microstructure and Properties of TiN Ceramics by Pressureless Liquid Phase Sintering
-
摘要:
以微米级TiN粉体为原料,纳米级Y2O3和Al2O3粉体为液相烧结助剂,采用无压液相烧结工艺制备TiN陶瓷,研究了烧结温度(1 700~1 850 ℃)对TiN陶瓷显微组织、力学性能和电学性能的影响。结果表明:不同烧结温度下陶瓷均由TiN、YAG(Y3Al5O12)和YAM(Y4Al2O9)三相组成;当烧结温度低于1 800 ℃时,TiN相分布均匀,YAG和YAM相较少,当烧结温度为1 800 ℃时,TiN晶粒长大,YAG和YAM相增多。随着烧结温度的升高,TiN陶瓷的相对密度、维氏硬度、抗弯强度和断裂韧度均先增大后减小,开口气孔率和电阻率均先减小后增大。当烧结温度低于1 800 ℃时,陶瓷的断裂方式以沿晶断裂为主,当烧结温度不低于1 800 ℃时以穿晶断裂为主。当烧结温度为1 800 ℃时,TiN陶瓷的综合性能最佳,其相对密度、维氏硬度、抗弯强度和断裂韧度均最大,分别为98.3%,13 GPa,420 MPa,6.1 MPa·m1/2,开口气孔率和电阻率均最小,分别为0.12%和3.04×10−7 Ω·m。
Abstract:TiN ceramics were prepared by pressureless liquid phase sintering with micron TiN powder as raw material and nano Y2O3 and Al2O3 powders as liquid phase sintering additives. The effect of sintering temperatures (1 700–1 850 ℃) on the microstructure, mechanical properties and electrical properties of TiN ceramics was studied. The results show that the ceramics consisted of TiN, YAG (Y3Al5O12) and YAM (Y4Al2O9) phases at different sintering temperatures. When the sintering temperature was lower than 1 800 ℃, TiN phase was distributed evenly, and the content of YAG and YAM phases was low. When the sintering temperature was 1 800 ℃, TiN grains grew up, and the content of YAG and YAM phases increased. The relative density, Vickers hardness, flexural strength and fracture toughness of TiN ceramics all increased first and then decreased with the increase of sintering temperature, while open porosity and resistivity both decreased first and then increased. The fracture mode of the ceramics was mainly intergranular fracture when the sintering temperature was lower than 1 800 ℃, and was mainly transgranular fracture when the sintering temperature was not lower than 1 800 ℃. The TiN ceramics sintered at 1 800 ℃ had the best comprehensive properties with the highest relative density, Vickers hardness, flexural strength and fracture toughness, which were 98.3%, 13 GPa, 420 MPa, 6.1 MPa · m1/2, respectively, and the lowest open porosity and resistivity, which were 0.12% and 3.04×10−7 Ω · m, respectively.
-
0. 引言
氮化钛(TiN)陶瓷是一种多功能金属陶瓷材料,具有硬度高、熔点高、化学稳定性优异、摩擦因数低、室温导电性良好、颜色独特且可变等优点[1-3],广泛应用于机械、生物医疗、代金装饰、半导体、节能建筑等领域[4-11]。TiN陶瓷的常用制备方法包括热压烧结法、放电等离子烧结法和无压烧结法[12-26]。与其他工艺相比,无压烧结法具有对烧结设备要求低、工艺简单、可实现工业规模化生产等优点,但是在烧结过程中需加入一定比例的烧结助剂才能制得致密性良好的TiN陶瓷。制备TiN陶瓷的烧结助剂主要包括TiB2、TiC、BN、AlN、Si3N4[15-21],这些烧结助剂与TiN形成固溶体,从而提高TiN的烧结性能,但目前的烧结温度仍然高达2 000 ℃以上,这会引起陶瓷晶粒的过度生长,导致陶瓷力学性能下降。TiN是强共价键化合物,其自扩散系数很低,烧结驱动力不足,因此难以通过低温下单纯的固相烧结来实现其烧结致密化。研究[3,22-23]发现,在TiN粉体中添加镍、钴等金属后,烧结时这些金属可在低温下形成液相,从而实现TiN陶瓷的低温液相烧结致密,但由于金属本身的硬度和熔点低、不耐腐蚀,该工艺制备的TiN陶瓷力学性能较差。
Al2O3与Y2O3在一定温度下会发生反应,形成YAM (Y4Al2O9,900~1 100 ℃生成)、YAP (YAlO3,1 100~1 250 ℃生成)和YAG (Y3Al5O12,1 300~1 600 ℃生成)等低熔点产物[27],这些产物可以促进Si3N4、SiC等[27-29]难烧结陶瓷在较低温度下的烧结致密。同时,这些产物具有的化学惰性使其在极端环境中能够保持稳定,可以增强陶瓷材料的耐腐蚀性和抗氧化性。推测可将Al2O3和Y2O3作为烧结助剂来提高无压液相烧结TiN陶瓷的致密性和力学性能,而烧结温度是影响陶瓷性能的主要因素,但是目前未见相关研究报道。基于此,作者以TiN粉体为原料、Y2O3和Al2O3纳米粉体为烧结助剂,采用无压液相烧结工艺制备TiN陶瓷,研究了不同烧结温度下TiN陶瓷的组织、力学性能和电学性能,以期为低温烧结TiN陶瓷提供试验参考。
1. 试样制备与试验方法
试验原料:TiN粉体,平均粒径3 μm,秦皇岛一诺高新材料开发有限公司提供;Al2O3粉体,平均粒径30 nm,上海水田材料科技有限公司提供;Y2O3粉体,平均粒径500 nm,上海水田材料科技有限公司提供。按照TiN粉体、Y2O3粉体、Al2O3粉体质量比为90∶5.96∶4.04进行配料[27],将称取好的粉体加入到聚乙烯球磨罐中,以去离子水为溶剂、氧化铝球为研磨介质,在90 r·min−1转速下机械球磨12 h,球料质量比为2∶1。将球磨后的浆料置于80 ℃烘箱中烘干,加入质量分数8%的聚乙烯醇溶液作为黏结剂进行造粒,在100 MPa压力下压制成尺寸为6.5 mm×6.5 mm×36 mm的条形试样,在150 MPa压力下进行冷等静压成型。将成型后的坯体置于80 ℃电热鼓风干燥箱中干燥12 h,放入石墨坩埚中在N2气氛中进行无压烧结,烧结温度分别为1 700,1 750,1 800,1 850 ℃,保温时间为1 h。
利用精度为0.000 1 g的精密电子天平称取陶瓷试样的质量,基于阿基米德排水法计算陶瓷的体积密度、开口气孔率和相对密度;通过烧结前后的质量差除以烧结前的质量计算陶瓷的质量损失率。采用游标卡尺测量烧结前后试样的宽度,通过烧结前后的宽度差除以烧结前的宽度计算陶瓷的收缩率。利用SmartLab型X射线衍射仪(XRD)分析陶瓷的物相组成,采用铜靶,Kα射线,工作电压为40 kV,工作电流为200 mA,扫描范围为10°~90°,扫描速率为8 (°)·min−1。采用JSM-7001F型场发射扫描电镜(SEM)观察陶瓷的微观结构,并用SEM附带的能谱仪(EDS)分析微区化学成分。按照GB/T 4741—1999,采用AG-Xplus100 kN型电子万能试验机基于三点弯曲法测试陶瓷的抗弯强度,试样尺寸为4 mm×5 mm×30 mm,下压速度为0.5 mm·min−1,跨距为20 mm,弯曲试验后采用SEM观察断口形貌。按照GB/T 23806—2009,在AG-Xplus100 kN型万能试验机上采用单边缺口梁法测试陶瓷的断裂韧度,试样尺寸为4 mm×5 mm×30 mm,跨距为20 mm,采用STX-202AQ型金刚石线切割机预制单边切口,切口深度为2.1 mm,下压速度为0.05 mm·min−1。采用401MVDTM型显微维氏硬度计测陶瓷的硬度,载荷为4.9 N,保载时间为10 s。按照GB/T 6146—2010,采用GEST-124型四探针电阻率测试仪测陶瓷的电阻率,探针间距为2 mm,测试电流为10 A。
2. 试验结果与讨论
2.1 物相组成
由图1可以看出:不同烧结温度下,TiN陶瓷均由TiN、YAG和YAM三相组成。烧结后陶瓷中有YAG和YAM新相生成,说明烧结助剂Y2O3和Al2O3在升温过程中发生了反应。随着烧结温度的升高,YAM相逐渐转变为YAG相[27,30];但是当烧结温度超过1 800 ℃后,由于YAG和YAM的熔点低,挥发加剧,因此二者的衍射峰强度降低[27]。
2.2 显微组织
由图2可知,1 800 ℃烧结后TiN陶瓷中白色区域主要为铝、钇、氧3种元素,浅灰色区域主要为氮、钛2种元素。结合XRD谱分析结果可知,灰色区域为TiN相,白色区域为YAG或YAM相。YAG和YAM相的熔点低于1 800 ℃,由此推测,在1 800 ℃烧结过程中形成了液相,且液相分布均匀,这有利于颗粒的滑动和重排,从而提高TiN陶瓷的致密性。
由图3可知:当烧结温度低于1 800 ℃时,灰色TiN相分布均匀,白色YAG和YAM相较少,分布于TiN晶界处,但黑色气孔数量较多;当烧结温度为1 800 ℃时,TiN晶粒长大,分布在TiN晶界处的YAG和YAM相增多,气孔数量减少;但是当烧结温度达到1 850 ℃时,陶瓷内部气孔再次增多。烧结温度越高,液相黏度越低,陶瓷材料越致密,但过高的烧结温度会加剧TiN分解及液相挥发,导致气孔数量增多[27-28]。
2.3 相对密度和开口气孔率
由图4可知:随着烧结温度的升高,TiN陶瓷的相对密度先增大后减小,开口气孔率先减小后增大,当烧结温度为1 800 ℃时,相对密度最大,开口气孔率最小,陶瓷的致密性最好,此时其体积密度为5.26 g·cm−3,达到理论密度的98.3%。烧结温度的升高使液相的黏度降低,促进物质迁移和气孔的排出,但过高的烧结温度会加剧TiN的分解及液相的挥发,使陶瓷内部的气孔增多,致密程度降低[27-28]。
2.4 质量损失率和收缩率
由图5可见,随着烧结温度的升高,TiN陶瓷的收缩率先增大后减小。当烧结温度低于1 800 ℃时,TiN陶瓷内部气孔较多,因此收缩率较低;当烧结温度为1 800 ℃时,陶瓷的开口气孔率最低,致密程度最高,因此收缩率最大;当烧结温度升高至1 850 ℃时,陶瓷的致密程度又降低,导致收缩率减小。随着烧结温度的升高,TiN陶瓷的质量损失率增大,这是由于随着烧结温度的升高,由高温烧结引起的水分蒸发、脱胶等质量损失以及由低熔点物质挥发引起的质量损失均增加[27]。
2.5 力学性能
由图6可知,随着烧结温度的升高,TiN陶瓷的抗弯强度先升高后降低,当烧结温度为1 800 ℃时,抗弯强度最大,为420 MPa。这说明在一定范围内增加烧结温度有利于TiN陶瓷抗弯强度的提高。由图7可以看出,随着烧结温度升高,TiN陶瓷的晶粒尺寸逐渐增大。这是由于液相的黏度随烧结温度的升高而不断降低,低黏度的液相更有利于传质的进行,从而促进晶粒的长大[31]。当烧结温度低于1 800 ℃时,TiN晶粒细小,易于滑动和重排,但此时烧结温度较低,液相含量较少,陶瓷难以达到理想致密程度,气孔率较高,这对材料的力学性能不利,此时陶瓷的断裂形式以沿晶断裂为主。当烧结温度达到1 800 ℃时,TiN晶粒依然较小,同时液相含量增加促进了TiN颗粒的滑动和重排,陶瓷的烧结致密化程度增加,力学性能提高。当烧结温度升高至1 850 ℃时,TiN陶瓷的晶粒粗大,且液相流失严重,陶瓷晶粒不易滑动和重排,且此时致密性变差,这对力学性能不利。当烧结温度达到1 800 ℃时,陶瓷的断裂形式以穿晶断裂为主。
气孔是影响TiN陶瓷抗弯强度的主要因素[32]:气孔的存在会减小载荷的作用面积,从而降低陶瓷材料所能承受的最大载荷;同时气孔处容易发生应力集中,当应力超过临界值时就会产生裂纹的失稳扩展,从而引起材料的断裂[33-34]。
晶粒尺寸也是影响材料强度的重要因素:晶粒尺寸越小,陶瓷的抗弯强度越大。当烧结温度为1 800 ℃时,TiN陶瓷的晶粒尺寸较小,开口气孔率最低,二者的综合作用使得TiN陶瓷的抗弯强度最大。
由图8可知,TiN陶瓷的断裂韧度和维氏硬度均随着烧结温度的升高先增大后减小,当烧结温度达到1 800 ℃时,二者均达到最大值,分别为6.1 MPa·m1/2和13 GPa。
随着烧结温度的升高,TiN陶瓷的开口气孔率先减小后增大,因此维氏硬度先增加后减小[32]。陶瓷的断裂韧性主要与开口气孔率有关,气孔处易产生应力集中而成为裂纹源,致使断裂韧度降低,因此随着烧结温度的升高,TiN陶瓷的断裂韧度先增大后减小。
2.6 电学性能
由图9可见,随着烧结温度的升高,TiN陶瓷的电阻率呈先减小后增大的趋势,当烧结温度为1 800 ℃时,电阻率最小,为3.04×10−7 Ω·m。TiN陶瓷的电阻率与其气孔率和晶粒尺寸有关[36]。较多气孔的存在会阻止导电相之间形成导电通路,同时晶粒尺寸较小时晶界面积增加,而晶界周围存在着大量的非配位原子,在延伸缺陷应力场的作用下形成绝缘层,因此烧结温度低于1 800 ℃时电阻率较大;当烧结温度达到1 800 ℃时,气孔率最低,TiN导电颗粒之间的接触面积增大,导电通路增多,因此电阻率最低。
3. 结论
(1)不同烧结温度下TiN陶瓷均由TiN、YAG和YAM三相组成。当烧结温度低于1 800 ℃时,TiN相分布均匀,YAG和YAM相较少,气孔数量较多;当烧结温度为1 800 ℃时,TiN晶粒长大,YAG和YAM相增多,气孔数量减少;但是当烧结温度达到1 850 ℃时,气孔再次增多。随着烧结温度的升高,TiN陶瓷的晶粒尺寸增加,相对密度和收缩率先增大后减小,开口气孔率先减小后增大,质量损失率增大。
(2)随着烧结温度的升高,TiN陶瓷的维氏硬度、抗弯强度、断裂韧度均先增大后减小,电阻率先减小后增大。当烧结温度低于1 800 ℃时,陶瓷的断裂方式以沿晶断裂为主,当烧结温度不低于1 800 ℃时,则以穿晶断裂为主。当烧结温度为1 800 ℃时,TiN陶瓷的综合性能最佳,其相对密度、维氏硬度、抗弯强度、断裂韧度均最大,分别为98.3%,13 GPa,420 MPa,6.1 MPa·m1/2,开口气孔率和电阻率均最小,分别为0.12%和3.04×10−7 Ω·m。
-
-
[1] GRAZIANI T ,BELLOSI A. Densification and characteristics of TiN ceramics[J]. Journal of Materials Science Letters,1995,14(15):1078-1081. [2] KANG J H ,KIM K J. Structural,optical,and electronic properties of cubic TiNx compounds[J]. Journal of Applied Physics,1999,86(1):346-350. [3] NAKAYAMA H ,OZAKI K. Effect of mechanical milling of elemental powders on interface formation in TiN-Ni cermets prepared by pulsed current sintering[J]. International Journal of Refractory Metals and Hard Materials,2015,51:309-314. [4] PETERS A B ,WANG C H ,ZHANG D J ,et al. Reactive laser synthesis of ultra-high-temperature ceramics HfC,ZrC,TiC,HfN,ZrN,and TiN for additive manufacturing[J]. Ceramics International,2023,49(7):11204-11229. [5] LU X H ,WANG G M ,ZHAI T ,et al. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors[J]. Nano Letters,2012,12(10):5376-5381. [6] 张志林,郭伟明,游洋,等.烧结温度和复合助剂对Al2O3-TiCN复合陶瓷显微组织和性能的影响[J].机械工程材料,2015,39(10):47-51. ZHANG Z L ,GUO W M ,YOU Y ,et al. Effects of sintering temperature and composite additive on microstructure and properties of Al2O3-TiCN ceramics[J]. Materials for Mechanical Engineering,2015,39(10):47-51.
[7] CUI Z M ,ZU C X ,ZHOU W D ,et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials,2016,28(32):6926-6931. [8] WING Z N. TiN modified SiC with enhanced strength and electrical properties[J]. Journal of the European Ceramic Society,2017,37(4):1373-1378. [9] ODEH I ,ELIAN R. The influence of the ion beam on the structure and optical properties of titanium nitride nano-scale thin films[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2015,365:175-181. [10] MORIYAMA M ,KAMATA K ,KOBAYASHI Y. Mechanical and electrical properties of hot-pressed TiN ceramics without additives[J]. Journal of the Ceramic Society of Japan,1991,99(1148):286-291. [11] KUWAHARA H ,MAZAKI N ,TAKAHASHI M ,et al. Mechanical properties of bulk sintered titanium nitride ceramics[J]. Materials Science and Engineering:A,2001,319/320/321:687-691. [12] XUE J X ,LIU H T ,TANG Y ,et al. Effect of sintering atmosphere on the densification behavior of hot pressed TiN ceramics[J]. Ceramics International,2013,39(7):8531-8535. [13] KIM W ,ROH K M ,LIM J W ,et al. The effect of ball milling on the mechanical properties of TiN consolidated by pulsed current activated sintering[J]. Journal of Alloys and Compounds,2013,574:260-265. [14] ZENG W M ,GAN X P ,LI Z Y ,et al. Effect of TiC addition on the microstructure and mechanical properties of TiN-based cermets[J]. Ceramics International,2017,43(1):1092-1097. [15] KHOBTA I ,PETUKHOV O ,VASYLKIV O ,et al. Synthesis and consolidation of TiN/TiB2 ceramic composites via reactive spark plasma sintering[J]. Journal of Alloys and Compounds,2011,509(5):1601-1606. [16] BLÄSS U W ,BARSUKOVA T ,SCHWARZ M R ,et al. Bulk titanium nitride ceramics:Significant enhancement of hardness by silicon nitride addition,nanostructuring and high pressure sintering[J]. Journal of the European Ceramic Society,2015,35(10):2733-2744. [17] RADAJEWSKI M ,HENSCHEL S ,GRÜTZNER S ,et al. Microstructure and mechanical properties of bulk TiN-AlN composites processed by FAST/SPS[J]. Ceramics International,2016,42(8):10220-10227. [18] KITIWAN M ,ITO A ,GOTO T. Spark plasma sintering of TiN-TiB2 composites[J]. Journal of the European Ceramic Society,2014,34(2):197-203. [19] WYZGA P ,JAWORSKA L ,BUCKO M M ,et al. TiN-TiB2 composites prepared by various sintering techniques[J]. International Journal of Refractory Metals and Hard Materials,2013,41:571-576. [20] KITIWAN M ,ITO A ,GOTO T. Spark plasma sintering of TiN-TiB2-hBN composites and their properties[J]. Ceramics International,2015,41(3):4498-4503. [21] ALI DELBARI S ,NAYEBI B ,GHASALI E ,et al. Spark plasma sintering of TiN ceramics codoped with SiC and CNT[J]. Ceramics International,2019,45(3):3207-3216. [22] STASZUK M ,PAKUŁA D ,REIMANN Ł ,et al. Structure and properties of the TiN/ZnO coating obtained by the hybrid method combining PVD and ALD technologies on austenitic Cr-Ni-Mo steel substrate[J]. Surfaces and Interfaces,2023,37:102693. [23] JIANG J X ,PANG X M ,ZHOU J X ,et al. Optical performance and corrosion resistance of TiN/Ni multiphase cermet by laser cladding[J]. Optics Laser Technology,2021,143:107308. [24] FOONG L K ,XU C Y. Hot pressing and microstructural characterization of SiC and TiN added TiB2 ceramics[J]. Ceramics International,2021,47(3):3946-3954. [25] NEKOUEE K A ,KHOSROSHAHI R A. Preparation and characterization of β-SiAlON/TiN nanocomposites sintered by spark plasma sintering and pressureless sintering[J]. Materials & Design,2016,112:419-428. [26] ANWER Z ,HUANG S G ,VLEUGELS J. Liquid phase assisted synthesis of (Ti,V,Nb,Ta,W) C-Ni high entropy carbide cermets by conventional pressureless sintering[J]. International Journal of Refractory Metals and Hard Materials,2022,107:105914. [27] 张宁SiC-YAG陶瓷复合材料的制备、组织和力学性能沈阳东北大学2004张宁.SiC-YAG陶瓷复合材料的制备、组织和力学性能[D].沈阳:东北大学,2004. ZHANG NPreparation,microstructure and mechanical properties of SiC-YAG ceramic compositesShenyangNortheastern University2004ZHANG N. Preparation,microstructure and mechanical properties of SiC-YAG ceramic composites[D]. Shenyang:Northeastern University,2004.
[28] 张宁,茹红强,才庆魁.SiC粉体制备及陶瓷材料液相烧结[M].沈阳:东北大学出版社,2008. ZHANG N ,RU H Q ,CAI Q K. Preparation of SiC powder and liquid phase sintering of ceramic materials[M]. Shenyang:Northeast University Press,2008.
[29] GU H T ,CHEN H ,GUO L C. Effect of nano-Al2O3 and Y2O3 on the properties and microstructure of Si3N4 [J]. Materials Science and Engineering:A,2008,491(1-2):177-181. [30] 赵义亮,黄楠,茹红强,等.烧结助剂Al2O3-Y2O3添加量对无压液相烧结TiC陶瓷结构与性能的影响[J].机械工程材料,2022,46(11):55-59. ZHAO Y L ,HUANG N ,RU H Q ,et al. Effect of sintering additive Al2O3-Y2O3 addition on structure and properties of TiC ceramics by pressureless liquid phase sintering[J]. Materials for Mechanical Engineering,2022,46(11):55-59.
[31] XIA C L ,ALI DELBARI S ,AHMADI Z ,et al. Electron microscopy study of ZrB2-SiC-AlN composites:Hot-pressing vs. pressureless sintering[J]. Ceramics International,2020,46(18):29334-29338. [32] 赵祖德.复合材料固-液成形理论与工艺[M].北京:冶金工业出版社,2008. ZHAO Z D. Theory and technology of solid-liquid forming of composite materials[M]. Beijing:Metallurgical Industry Press,2008.
[33] LU P Z ,XU X P ,YI W W ,et al. Porosity effect on densification and shape distortion in liquid phase sintering[J]. Materials Science and Engineering:A,2001,318(1/2):111-121. [34] DE ORO CALDERON R ,GIERL-MAYER C ,DANNINGER H. Fundamentals of sintering:Liquid phase sintering[M]//Encyclopedia of Materials:Metals and Alloys. Amsterdam:Elsevier,2022:481-492. [35] 关振铎,张中太,焦金生.无机材料物理性能[M].2版.北京:清华大学出版社,2011. GUAN Z D ,ZHANG Z T ,JIAO J S. Physical properties of inorganic materials[M]. 2nd ed. Beijing:Tsinghua University Press,2011.
[36] 杨建国,沈伟健,李华鑫,等.氮掺杂导电碳化硅陶瓷研究进展[J].材料工程,2022,50(9):18-31. YANG J G ,SHEN W J ,LI H X ,et al. Research progress in nitrogen-doped electrically conductive silicon carbide ceramics[J]. Journal of Materials Engineering,2022,50(9):18-31.