• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

7075-T6铝合金的放电等离子烧结连接工艺优化

李德银, 万银根, 谢兰生, 陈明和

李德银, 万银根, 谢兰生, 陈明和. 7075-T6铝合金的放电等离子烧结连接工艺优化[J]. 机械工程材料, 2024, 48(9): 44-52. DOI: 10.11973/jxgccl230359
引用本文: 李德银, 万银根, 谢兰生, 陈明和. 7075-T6铝合金的放电等离子烧结连接工艺优化[J]. 机械工程材料, 2024, 48(9): 44-52. DOI: 10.11973/jxgccl230359
LI Deyin, WAN Yingen, XIE Lansheng, CHEN Minghe. Optimization of Spark Plasma Sintering Joining Process of 7075-T6 Aluminum Alloy[J]. Materials and Mechanical Engineering, 2024, 48(9): 44-52. DOI: 10.11973/jxgccl230359
Citation: LI Deyin, WAN Yingen, XIE Lansheng, CHEN Minghe. Optimization of Spark Plasma Sintering Joining Process of 7075-T6 Aluminum Alloy[J]. Materials and Mechanical Engineering, 2024, 48(9): 44-52. DOI: 10.11973/jxgccl230359

7075-T6铝合金的放电等离子烧结连接工艺优化

详细信息
    作者简介:

    李德银(1999—),男,安徽宿州人,硕士研究生

    通讯作者:

    通信作者(导师):谢兰生教授

  • 中图分类号: TG457.1

Optimization of Spark Plasma Sintering Joining Process of 7075-T6 Aluminum Alloy

  • 摘要:

    采用放电等离子烧结技术对7075-T6铝合金进行连接,通过单因素法研究了母材表面预处理(400#砂纸打磨、化学浸蚀、400#砂纸打磨+化学浸蚀、2000#砂纸打磨+化学浸蚀)以及升温速率(10,30,50 ℃·min−1)、连接温度(450,470,490,510 ℃)、连接压力(4.5,5.0,5.5,6.0,7.0 MPa)和保温时间(45,60,75,90,120 min)对接头连接质量、剪切性能和变薄率的影响,确定了合适的表面预处理工艺以及最优的工艺参数。结果表明:合适的表面预处理工艺为400#砂纸打磨,获得7075-T6铝合金接头的连接质量最好,接头界面未闭合孔洞很少,焊合率最大,为71.7%;随着升温速率的升高,接头的连接质量变差,但其焊合率均高于76%,接头的抗剪强度和变薄率均降低;随着连接温度的升高或连接压力的增加,接头的连接质量变好,接头的焊合率、抗剪强度和变薄率均增大,但当连接压力大于6.0 MPa时,焊合率和抗剪强度增加幅度减小,而变薄率大幅增加;随着保温时间的延长,接头的焊合率、抗剪强度和变薄率的变化幅度均较小。400#砂纸打磨后7075-T6铝合金的最优连接工艺为升温速率50 ℃·min−1、连接压力6.0 MPa、连接温度490 ℃、保温时间45 min,此时接头的焊合率为81.3%,抗剪强度为132.9 MPa,变薄率为1.91%,剪切断裂方式为韧性断裂。

    Abstract:

    The 7075-T6 aluminum alloy was joined by spark plasma sintering technique. The effects of base metal surface pretreatment (400# sandpaper grinding, chemical etching, 400# sandpaper grinding + chemical etching and 2000# sandpaper grinding + chemical etching), heating rate (10, 30, 50 °C · min−1), joining temperature (450, 470, 490, 510 °C), joining pressure (4.5, 5.0, 5.5, 6.0, 7.0 MPa) and holding time (45, 60, 75, 90, 120 min) on the joining quality, shear properties and thinning rate of the joint were studied by single factor method, and the appropriate surface pretreatment process and the optimal process parameters were obtained. The results show that the appropriate surface pretreatment was 400# sandpaper grinding; at this time the joining quality of 7075-T6 aluminum alloy joint was the best, there were few unclosed holes in the joint interface, and the bonding rate was largest with value of 71.7%. With the increase of heating rate, the joining quality of the joint became worse, but the bonding rate was higher than 76%, and the shear strength and thinning rate of the joint decreased. With the increase of the joining temperature or the joining pressure, the joining quality of the joint became better, and the bonding rate, shear strength and thinning rate of the joint increased. However, when the joining pressure was greater than 6.0 MPa, the increase of bonding rate and shear strength decreased, while the thinning rate increased significantly. With the increase of holding time, the variation of the bonding rate, shear strength and thinning rate of the joint was small. The optimum joining process of 7075-T6 aluminum alloy was heating rate of 50 °C min−1, joining pressure of 6.0 MPa, joining temperature of 490 °C and holding time of 45 min. At this time, the bonding rate of the joint was 81.3%, the shear strength was 132.9 MPa, the thinning rate was 1.91%, and the shear fracture mode was ductile fracture.

  • 油井管是由油管、套管、钻杆和井下工具等组成的特殊的石油机械装备,是连通地面和油藏的唯一通道。连续油管因具有可连续起下、作业周期短、成本低等特点,已广泛应用于大庆、长庆、新疆等油田[1]。采用连续油管携砂压裂作业进行油气储层改造时,携砂液高速流经管内会引起管壁的冲蚀磨损,加速管体损伤,导致连续油管发生刺漏、破裂等失效问题[2-3]

    目前,对于石油管在压裂工况下冲蚀问题的研究,主要集中在传统的非连续单根油井管材料上。虽然这些研究成果可以借鉴,但是不能完全照搬应用于连续油管。随着连续油管压裂技术的推广,连续油管材料的冲蚀性能研究得到越来越多的关注。窦益华等[4]研究了在不同携砂液冲刷速度和冲刷角度下连续油管外壁的冲蚀危险区域和冲蚀速率的周期性变化,但未考虑砂质量浓度和砂粒径的影响。赵签等[5]研究发现,无论砂质量浓度、冲刷速度和砂粒径大小如何,油管的最大冲蚀损伤均发生在斜井段入口附近,但未进行有关砂类型对连续油管壁面的冲蚀研究。鄢标等[6]研究发现,螺旋段连续油管的冲蚀速率随着压裂液中砂质量浓度及冲刷速度的增大而增大。连续油管在压裂工况下的冲蚀磨损问题非常复杂,其中携砂液的冲刷角度、冲刷速度、砂质量浓度、砂粒径和砂类型被认为是引起管材冲蚀损伤的主要因素[7-14],因此在研究其抗冲蚀性能时需要考虑这些关键影响因素。

    QT1100钢是一种高强度低合金钢,可抵抗大气腐蚀,制成的连续油管产量高。作者采用喷射式试验装置对该油管钢进行液固两相流冲蚀试验,研究了携砂液冲刷角度、冲刷速度、砂质量浓度、砂粒径、砂类型等因素对其冲蚀性能的影响规律,分析了其冲蚀磨损机理。

    试验材料为QT1100连续油管钢,由长庆油田提供,化学成分(质量分数/%)为0.16C,1.65Mn,0.025P,0.005S,0.5Si,余Fe;抗拉强度和屈服强度分别为758 MPa和689 MPa,硬度为28 HB,断后伸长率为16%。在试验钢上截取尺寸为20 mm×20 mm×5 mm的长方体冲蚀试样,用360#,600#,800#和1200#水磨砂纸逐级打磨测试表面,直至表面平整光滑,达到ASTM G73:2010标准要求。将打磨好的试样用无水乙醇冲洗干净,烘干后放入干燥器皿中于50 ℃存放12 h以上。

    采用如图1所示的冲蚀试验系统进行液固两相流冲蚀试验:将试样固定在冲蚀试验台的夹具上,通过调节夹具与喷嘴之间的夹角设置冲刷角度;将携砂液加入储液罐,开启搅拌器进行充分搅拌后,对试样进行冲蚀。携砂液由清水和天然石英砂或人工陶粒砂配制而成,天然石英砂颗粒为尖角形,粒径分别为0.300~0.420 mm,0.200~0.250 mm,0.150~0.180 mm,0.106~0.125 mm,0.063~0.090 mm,人工陶粒砂颗粒为近球形,粒径为0.2 mm;携砂液中砂质量浓度分别为15,30,45,60,75 kg·m−3,冲刷角度分别为15°,30°,45°,60°,75°,90°,冲刷速度为2.4,7.2,12.0,16.9 m·s−1,冲刷时间为1.5 h。试验结束关闭装置,取下试样,清洁被冲刷表面,烘干。称取冲蚀前后试样质量,采用失重法计算冲蚀速率[15],计算公式为

    ER=10×m0-m1Stρw (1)

    式中:ER为冲蚀速率,mm·h−1m0,m1分别为冲蚀试验前后试样的质量,g;S为试样冲蚀面的面积,m2t为冲刷时间,h;ρw为材料密度,kg·m−3

    图  1  冲蚀试验系统示意
    Figure  1.  Schematic of erosion test system

    采用Gemini SEM 360型扫描电子显微镜(SEM)观察冲蚀试样表面微观形貌。

    图2可见,试验钢的冲蚀速率随着冲刷速度提高而增大,随着冲刷角度增加先增大后减小,在45°角冲刷时冲蚀速率最大。

    图  2  不同冲刷速度下试验钢冲蚀速率随冲刷角度的变化曲线
    Figure  2.  Erosion rate vs scouring angle curves of test steel at different scouring speeds

    图3可以看出:在冲刷速度12 m·s−1下小角度(15°,30°)冲刷后,试验钢表面出现较长的切削犁沟和少量冲击坑;当冲刷角度增大至45°时,表面切削犁沟长度变短,冲击坑数量增多,冲蚀面积更大且深度更深;随着冲刷角度继续增大,试验钢表面切削痕迹减少,主要存在冲击凹坑,当冲刷角度增大至90°时,切削痕迹基本消失,出现了无方向性的冲击坑和裂纹。这说明以清水和天然石英砂粒混合的携砂液对试验钢进行不同角度冲刷时,其冲蚀机理均为物理性的机械冲刷磨损。当以小角度(小于45°)冲刷时,携砂液主要以切应力形式作用于试验钢表面,对试验钢表面进行微切削而引起较长的切削犁沟;当以大角度(大于45°)冲刷时,携砂液主要以正应力凿压和挤压方式作用于试验钢表面,导致表面产生明显的冲击坑;当冲刷角度为45°时,试验钢表面承受切应力和正应力共同作用,冲蚀磨损最严重,其表面冲击坑和切削犁沟都较明显。这与文献[16]中304不锈钢经液固两相流蚀刷后的冲蚀损伤机理相符。

    图  3  不同冲刷角度和冲刷速度冲刷后试验钢表面的SEM形貌(粒径0.150~0.180 mm天然石英砂,砂质量浓度15 kg·m−3)
    Figure  3.  SEM morphology of surface of test steel after erosion with different scouring angles and scouring speeds (0.150–0.180 mm particle size of natural quartz sand, sand mass concentration of 15 kg·m−3)

    在冲刷角度45°下,当冲刷速度为2.4 m·s−1时,试验钢表面出现一些轻微切削痕迹和不太明显的冲击坑;当冲刷速度升高至7.2 m·s−1时,冲击坑深度加深且其周围出现轻微裂痕;当冲刷速度达到12 m·s−1时,试验钢表面冲击坑的范围扩大,切削犁沟变得更长。这是由于随着携砂液流速的升高,其携带砂粒的速度增大,砂粒的动能也随之增大,对试验钢表面产生的切削和挤压作用增强,引起的冲蚀损伤越发严重[17]。不同冲刷速度下的冲蚀磨损机理仍以机械冲刷磨损为主。

    图4可见,随着携砂液中天然石英砂质量浓度的增大,试验钢的冲蚀速率先缓慢增加,在砂质量浓度为60 kg·m−3时下降,随后快速增大。推测当砂质量浓度为60 kg·m−3时,砂粒之间碰撞加剧,削弱了砂粒对试验钢表面的冲蚀作用,导致冲蚀速率下降;而当砂质量浓度为75 kg·m−3时,冲蚀面结构破坏,冲蚀面发生剥落,导致冲蚀速率上升。

    图  4  试验钢冲蚀速率随砂质量浓度的变化曲线
    Figure  4.  Erosion rate vs sand mass concentration curve of test steel

    图5可见:在砂质量浓度为15 kg·m−3时,试验钢表面经过冲刷出现了切削犁沟和冲击坑;当砂质量浓度为30 kg·m−3时,试验钢表面出现大量凹凸不平的冲击坑,切削犁沟痕迹基本消失,这是因为随着砂质量浓度的增大,试验钢表面的损伤面积也随之增大,较大的损伤面积掩盖了切削犁沟的痕迹;当砂质量浓度增加到45 kg·m−3时,冲击坑的深度增大且范围扩大;继续增大砂质量浓度至60 kg·m−3,试验钢表面出现凸起部分,冲击坑的深度减小,这是因为砂粒之间碰撞加剧,削弱了对试样表面的冲蚀作用;当砂质量浓度为75 kg·m−3时,冲击坑的深度再次加大,这是因为当砂质量浓度过大时,冲蚀面结构被完全破坏,冲蚀面发生剥落,冲蚀磨损加剧[18]。不同砂质量浓度下的冲蚀磨损机理以机械冲刷磨损为主。

    图  5  不同砂质量浓度携砂液以12 m·s−1速度、45°角冲刷后试验钢表面的SEM形貌(0.150~0.180 mm天然石英砂)
    Figure  5.  SEM morphology of surface of test steel after erosion with different sand mass concentrations of carrying fluid at speed of 12 m·s−1 and angle of 45° (0.150–0.180 mm of particle size of natural quartz sand)

    图6可见,随着天然石英砂粒径的增大,冲蚀速率呈先增后减的变化趋势,其中粒径0.150~0.180 mm的天然石英砂冲刷后试验钢的冲蚀速率最大。这是由于在相同冲刷速度下,粒径较大的砂粒相较于粒径小的砂粒具有更大的动能,对试验钢表面造成的冲蚀损伤更为显著;但是由于砂质量浓度保持不变,随着砂粒粒径的继续增大,单位流量内砂粒的数量减少,砂粒对试验钢的冲刷次数减少,引起的冲蚀损伤减轻[19]

    图  6  试验钢冲蚀速率随天然石英砂粒径的变化曲线
    Figure  6.  Erosion rate vs particle size of natural quartz sand curve of test steel

    图7图8可见,天然石英砂冲蚀后试验钢的冲蚀速率更大,产生的冲击坑更深,切削犁沟更长,造成的冲蚀损伤更大。这说明尖角形天然石英砂对试验钢的冲蚀损伤远大于近球形人工陶粒砂,与文献[14]中的结论吻合。

    图  7  不同砂类型下试验钢冲蚀速率随冲刷速度的变化曲线
    Figure  7.  Erosion rate vs scouring speed curves of test steel with different sand types
    图  8  不同砂类型冲刷后试验钢的SEM形貌
    Figure  8.  SEM morphology of surface of test steel after scouring with different types of sand: (a) 0.150–0.180 mm particle size of natural quartz sand and (b) 0.2 mm particle size of artificial ceramsite sand

    (1)在试验参数下进行冲蚀后,QT1100连续油管钢均主要发生机械冲刷磨损,损伤机理为微切削和冲击挤压;在小角度(15°~45°)冲刷时磨损以微切削为主,在大角度(45°~90°)冲刷时磨损以冲击挤压为主。

    (2)试验钢的冲蚀速率随携砂液的冲刷角度增大先增大后减小,当冲刷角度为45°时,表面冲蚀磨损最严重;冲蚀速率随冲刷速度增大而增大,随着砂质量浓度增加先增大,当砂质量浓度为60 kg·m−3时减小,随后快速增大。

    (3)随着携砂液中天然石英砂粒径的增大,试验钢的冲蚀速率先增大后减小,当粒径为0.150~0.180 mm时最大;与近球形人工陶粒砂相比,尖角形天然石英砂对试验钢的冲蚀磨损更大。

  • 图  1   7075-T6铝合金的显微组织

    Figure  1.   Microstructure of 7075-T6 aluminum alloy

    图  2   搭接剪切试样结构与尺寸示意

    Figure  2.   Schematic of structure and size of lap shear specimen

    图  3   母材经不同工艺表面预处理后SPS连接接头的截面OM形貌

    Figure  3.   OM morphology of SPS joining joint section after base metal surface pretreated by different processes: (a) chemical etching; (b) 2000# sandpaper grinding + chemical etching; (c) 400# sandpaper grinding + chemical etching and (d) 400# sandpaper grinding

    图  4   不同升温速率下接头的截面OM形貌(连接温度490 ℃、连接压力5.5 MPa、保温时间45 min)

    Figure  4.   OM morphology of joint section at different heating rates (joining temperature of 490 ℃,joining pressure of 5.5 MPa and holding time of 45 min)

    图  5   不同升温速率下SPS连接过程中等效电流的变化曲线

    Figure  5.   Curves of equivalent current during SPS joining at different heating rates

    图  6   不同连接温度下接头的截面OM形貌(连接压力5.5 MPa、保温时间45 min、升温速率50 ℃·min−1)

    Figure  6.   OM morphology of joint section at different joining temperatures (joining pressure of 5.5 MPa, holding time of 45 min and heating rate of 50 ℃·min−1)

    图  7   接头的抗剪强度和变薄率随连接温度的变化曲线

    Figure  7.   Curves of shear strength and thinning rate vs joining temperature of joints

    图  8   不同连接压力下接头的截面OM形貌(连接温度490 ℃、升温速率50 ℃·min−1、保温时间45 min)

    Figure  8.   OM morphology of joint section under different joining pressures (joining temperature of 490 ℃, heating rate of 50 ℃·min−1 and holding time of 45 min)

    图  9   接头的抗剪强度和变薄率随连接压力的变化曲线

    Figure  9.   Curves of shear strength and thinning rate vs joining pressure of joints

    图  10   不同保温时间下接头的截面OM形貌(升温速率50 ℃·min−1、连接温度490 ℃、连接压力6.0 MPa)

    Figure  10.   Section OM morphology of joints under different holding times (heating rate of 50 ℃·min−1, joining temperature of 490 ℃ and joining pressure of 6.0 MPa)

    图  11   接头的抗剪强度和变薄率随保温时间的变化曲线

    Figure  11.   Curves of shear strength and thinning rate vs holding time of joints

    图  12   最优SPS工艺连接的接头剪切断口SEM形貌

    Figure  12.   SEM morphology of shear fracture of joint under optimum SPS process

    图  13   7075-T6铝合金的SPS连接过程示意

    Figure  13.   SPS joining process diagram of 7075-T6 aluminum alloy: (a) before joining; (b) 1st stage of joining; (c) 2nd stage of joining and (d) 3rd stage of joining

    表  1   7075-T6铝合金的化学成分

    Table  1   Chemical composition of 7075-T6 aluminum alloy

    元素SiFeCuMnMgCrZnTiAl
    质量分数/%0.190.231.400.152.400.205.390.14
    下载: 导出CSV
  • [1] 马思怡,张伟健,苏睿明,等.7xxx系铝合金回归再时效的研究现状[J].有色金属科学与工程,2022,13(2):38-50.

    MA S Y ,ZHANG W J ,SU R M ,et al. Research status of regression and reaging on 7xxx series aluminum alloy[J]. Nonferrous Metals Science and Engineering,2022,13(2):38-50.

    [2] 张允康,许晓静,罗勇,等.7075铝合金强化固溶T76处理后的拉伸与剥落腐蚀性能[J].稀有金属材料与工程,2012,41(增刊2):612-615.

    ZHANG Y K ,XU X J ,LUO Y ,et al. Tensile and spalling corrosion properties of 7075 aluminum alloy after strengthening solution T76 treatment[J]. Rare Metal Materials and Engineering,2012,41(S2):612-615.

    [3] 陈轩,李萌蘖,卜恒勇,等.7系铝合金焊接技术的研究现状及展望[J].材料导报,2023,37(13):200-208.

    CHEN X ,LI M N ,BU H Y ,et al. Research status and progress on the welding technologies of 7XXX series aluminum alloy[J]. Materials Reports,2023,37(13):200-208.

    [4] 农琪,谢业东,金长义,等.铝合金焊接技术的研究现状与展望[J].热加工工艺,2013,42(9):160-162.

    NONG Q ,XIE Y D ,JIN C Y ,et al. Research status and perspectives of welding process for aluminum alloy[J]. Hot Working Technology,2013,42(9):160-162.

    [5] 侯艳喜,徐荣正,李慧,等.铝合金搅拌摩擦焊接技术的现状与展望[J].热加工工艺,2019,48(5):1-5.

    HOU Y X ,XU R Z ,LI H ,et al. Research status and prospect of friction stir welding technology of Al alloy[J]. Hot Working Technology,2019,48(5):1-5.

    [6] 解旭,翟鑫钰.铝合金焊接方法综述[J].有色金属加工,2022,51(4):4-11.

    XIE X ,ZHAI X Y. Review of aluminum alloy welding methods[J]. Nonferrous Metals Processing,2022,51(4):4-11.

    [7] 巩云峰6061铝合金真空扩散焊接工艺研究南京南京航空航天大学2019巩云峰.6061铝合金真空扩散焊接工艺研究[D].南京:南京航空航天大学,2019.

    GONG Y FResearch on vacuum diffusion bonding technology of 6061 aluminum alloyNanjingNanjing University of Aeronautics and Astronautics2019GONG Y F. Research on vacuum diffusion bonding technology of 6061 aluminum alloy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2019.

    [8] 苗鑫航天用5A06铝合金瞬时液相扩散焊焦作河南理工大学2020苗鑫.航天用5A06铝合金瞬时液相扩散焊[D].焦作:河南理工大学,2020.

    MIAO XTransient liquid phase bonding of 5A06 aluminum alloy for aerospaceJiaozuoHenan Polytechnic University2020MIAO X. Transient liquid phase bonding of 5A06 aluminum alloy for aerospace[D]. Jiaozuo:Henan Polytechnic University,2020.

    [9] 谭天亚脉冲大电流加热条件下原子的扩散机理武汉武汉理工大学2003谭天亚.脉冲大电流加热条件下原子的扩散机理[D].武汉:武汉理工大学,2003.

    TAN T YMechanism of atom diffusion under the heat treatment by big pulse electric currentWuhanWuhan University of Technology2003TAN T Y. Mechanism of atom diffusion under the heat treatment by big pulse electric current[D]. Wuhan:Wuhan University of Technology,2003.

    [10] 白玲,葛昌纯,沈卫平.放电等离子烧结技术[J].粉末冶金技术,2007,25(3):217-223.

    BAI L ,GE C C ,SHEN W P. Spark plasma sintering technology[J]. Powder Metallurgy Technology,2007,25(3):217-223.

    [11] 杨芝TZM合金与WRe合金的SPS扩散连接及机理研究合肥合肥工业大学2018杨芝.TZM合金与WRe合金的SPS扩散连接及机理研究[D].合肥:合肥工业大学,2018.

    YANG ZDiffusion bonding between TZM alloy and WRe alloy by spark plasma sinteringHefeiHefei University of Technology2018YANG Z. Diffusion bonding between TZM alloy and WRe alloy by spark plasma sintering[D]. Hefei:Hefei University of Technology,2018.

    [12] 何代华脉冲大电流热焊接合金的机理和工艺研究武汉武汉理工大学2005何代华.脉冲大电流热焊接合金的机理和工艺研究[D].武汉:武汉理工大学,2005.

    HE D HStudy on the mechanism and process of pulse current hot joining of alloysWuhanWuhan University of Technology2005HE D H. Study on the mechanism and process of pulse current hot joining of alloys[D]. Wuhan:Wuhan University of Technology,2005.

    [13] 彭勇,傅正义,王为民,等.脉冲大电流扩散焊接Al-Li合金1420[J].焊接学报,2008,29(1):57-60.

    PENG Y ,FU Z Y ,WANG W M ,et al. Diffusion welding of Al-Li alloys 1420 with pulsed current[J]. Transactions of the China Welding Institution,2008,29(1):57-60.

    [14] YANG J L ,WANG G F ,JIAO X Y ,et al. Current-assisted diffusion bonding of extruded Ti-22Al-25Nb alloy by spark plasma sintering:Interfacial microstructure and mechanical properties[J]. Journal of Materials Engineering and Performance,2018,27(6):3035-3043.
    [15] CHUVIL DEEV V N ,NOKHRIN A V ,KOPYLOV V I ,et al. Spark plasma sintering for high-speed diffusion bonding of the ultrafine-grained near-α Ti-5Al-2V alloy with high strength and corrosion resistance for nuclear engineering[J]. Journal of Materials Science,2019,54(24):14926-14949.
    [16] SUGIYAMA S ,SUGAWARA Y ,KIMURA M ,et al. Consolidation of stellite and its bonding to stainless steel by spark plasma sintering[J]. Journal of the Japan Society of Powder and Powder Metallurgy,1998,45(7):675-679.
    [17] 张国栋,洪敏,张建强,等.基于SPS技术的异种钢焊接[J].焊接学报,2009,30(2):141-144.

    ZHANG G D ,HONG M ,ZHANG J Q ,et al. Research on dissimilar steel welding via spark plasma sintering[J]. Transactions of the China Welding Institution,2009,30(2):141-144.

    [18] 胡大为,杨芝,胡可,等.钛锆钼合金与钨铼合金的SPS扩散焊接[J].焊接学报,2018,39(11):73-77.

    HU D W ,YANG Z ,HU K ,et al. Diffusion bonding between TZM alloy and WRe alloy by spark plasma sintering[J]. Transactions of the China Welding Institution,2018,39(11):73-77.

    [19] KONDOU K ,MATSUMOTO N ,WADA K J ,et al. Effect of bonding conditions on joints of 5052Al and 6063Al in pulsed electric current bonding[J]. Welding International,2009,23(11):810-816.
    [20] 何辰佳,陈明和,谢兰生.TC4钛合金扩散连接工艺研究[J].热加工工艺,2017,46(17):64-68.

    HE C J ,CHEN M H ,XIE L S. Study on diffusion bonding process of TC4 titanium alloy[J]. Hot Working Technology,2017,46(17):64-68.

    [21] 巩云峰,谢兰生,陈明和.工艺参数对6061-T6铝合金真空扩散焊接接头形貌和性能的影响[J].机械工程材料,2020,44(2):22-26.

    GONG Y F ,XIE L S ,CHEN M H. Effect of process parameters on morphology and property of vacuum diffusion welded joint of 6061-T6 aluminum alloy[J]. Materials for Mechanical Engineering,2020,44(2):22-26.

    [22] 朱正行.电阻焊技术[M].北京:机械工业出版社,2000:7-13.

    ZHU Z H. Resistance welding technology[M]. Beijing:China Machine Press,2000:7-13.

    [23] MUNIR Z A ,ANSELMI-TAMBURINI U ,OHYANAGI M. The effect of electric field and pressure on the synthesis and consolidation of materials:A review of the spark plasma sintering method[J]. Journal of Materials Science,2006,41(3):763-777.
图(13)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 修回日期:  2024-06-26
  • 刊出日期:  2024-09-19

目录

/

返回文章
返回