• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

退火温度对Fe-0.4C-2Mn-4Al高强钢组织与拉伸性能的影响

马晓杰, 樊伟, 冯运莉, 李杰

马晓杰, 樊伟, 冯运莉, 李杰. 退火温度对Fe-0.4C-2Mn-4Al高强钢组织与拉伸性能的影响[J]. 机械工程材料, 2024, 48(12): 19-24. DOI: 10.11973/jxgccl230367
引用本文: 马晓杰, 樊伟, 冯运莉, 李杰. 退火温度对Fe-0.4C-2Mn-4Al高强钢组织与拉伸性能的影响[J]. 机械工程材料, 2024, 48(12): 19-24. DOI: 10.11973/jxgccl230367
MA Xiaojie, FAN Wei, FENG Yunli, LI Jie. Effect of Annealing Temperature on Microstructure and Tensile Properties of Fe-0.4C-2Mn-4Al High Strength Steel[J]. Materials and Mechanical Engineering, 2024, 48(12): 19-24. DOI: 10.11973/jxgccl230367
Citation: MA Xiaojie, FAN Wei, FENG Yunli, LI Jie. Effect of Annealing Temperature on Microstructure and Tensile Properties of Fe-0.4C-2Mn-4Al High Strength Steel[J]. Materials and Mechanical Engineering, 2024, 48(12): 19-24. DOI: 10.11973/jxgccl230367

退火温度对Fe-0.4C-2Mn-4Al高强钢组织与拉伸性能的影响

基金项目: 

国家自然科学基金资助项目 51974134

河北省科技重大专项项目 21281008Z

详细信息
    作者简介:

    马晓杰(1999-),男,河北石家庄人,硕士研究生

    通讯作者:

    冯运莉教授

  • 中图分类号: TG142

Effect of Annealing Temperature on Microstructure and Tensile Properties of Fe-0.4C-2Mn-4Al High Strength Steel

  • 摘要:

    通过真空感应炉熔炼、热轧、冷轧和退火工艺制备Fe-0.4C-2Mn-4Al高强钢,研究了退火温度(650,700,750,800 ℃)对其显微组织和拉伸性能的影响。结果表明:不同温度退火后试验钢的组织与热轧和冷轧态试验钢基本相同,均由δ-铁素体、α-铁素体、渗碳体以及细小的κ型碳化物组成;随着退火温度的升高,δ-铁素体条带逐渐消失,再结晶程度增加,α-铁素体晶粒尺寸增大,碳化物数量减少;750 ℃退火后α-铁素体与渗碳体的分布最为均匀。不同温度退火态试验钢的拉伸曲线均未见明显的屈服平台,说明试验钢发生连续均匀的塑性变形;随着退火温度的升高,试验钢的抗拉强度、屈服强度整体呈降低趋势,断后伸长率呈增大趋势。当退火温度为750 ℃时,试验钢的强塑积最大,为14.28 GPa·%,加工硬化能力最好,综合性能最好。

    Abstract:

    Fe-0.4C-2Mn-4Al high strength steel was prepared by vacuum induction furnace melting, hot rolling, cold rolling and annealing processes. The influence of annealing temperature (650, 700, 750, 800 °C) on its microstructure and tensile properties was studied. The results show that the microstructure type of test steel after annealing at different temperatures was basically the same as those of the hot-rolled and cold-rolled test steel, all consisting of δ-ferrite, α-ferrite, cementite and fine κ-type carbides. As the annealing temperature increased, the δ-ferrite strips gradually disappeared and its degree of recrystallization increased, the grain size of α-ferrite increased, and the amount of carbides decreased. The distribution of α-ferrite and cementite was the most uniform after annealing at 750 ℃. The tensile curves of the test steel after annealing at different temperatures showed no obvious yield plateau, indicating that the test steel underwent continuous and uniform plastic deformation. With the increase of annealing temperature, the tensile strength and yield strength of the test steel showed an overall decreasing trend, and the percentage elongation after fracture increased. When the annealing temperature was 750 °C, the product of strength and ductility of the test steel was the largest, which was 14.28 GPa · %, and the work hardening ability was the best; the test steel had the best comprehensive performance.

  • 随着汽车保有量的增加以及能源短缺和环境污染问题的日益尖锐,汽车需在保证安全的同时减少废气排放量,以提高能源利用率[1-6]。轻量化是实现汽车工业节能减排的一个重要技术路径,为了提高轻量化水平,大量先进高强钢和铝合金等新型材料被应用到汽车上。其中,含δ-铁素体的Fe-C-Mn-Al轻质高强钢是一种很有前途的汽车材料[7],由于具有溶质原子固溶和晶格膨胀的特性,该钢表现出优异的强度和延展性[8-12]。YI等[13]研究发现,在Fe-C-Mn-Al高强钢中的铝元素不仅可以抑制α相变过程中渗碳体的析出,还可以促进由强而脆的马氏体和韧性的δ-铁素体组成的双相组织形成,从而提高该钢韧性。热处理工艺是影响高强钢性能的重要因素[14-16],最常见的热处理工艺是热轧和冷轧后的退火或者淬火+回火,但是目前有关退火工艺对Fe-C-Mn-Al高强钢组织和性能影响的研究较少。因此,作者以Fe-0.4C-2Mn-4Al高强钢为研究对象,研究了退火温度对其组织与拉伸性能的影响,以期为汽车用钢的生产和应用提供一些参考。

    按照名义成分(质量分数/%)为Fe-0.4C-2Mn-4Al称取原料,在真空感应炉中熔炼并浇铸成50 kg铸锭,采用sparkCCD 7000型火花直读光谱仪测得其化学成分(质量分数)为0.40%C,2%Mn,4%Al,0.008 6%S,0.009 4%P,余Fe。铸锭经热锻后切割成尺寸为80 mm×60 mm×40 mm的坯料,然后在RAL-NEU型ϕ350 mm×350 mm高刚度二辊热轧机上进行热轧,初轧温度为1 100 ℃,终轧温度为880 ℃;经7道次轧制后其厚度为4 mm,总压下率为94%。将热轧板切割成尺寸为50 mm×150 mm×4 mm的长方体试样,对试样进行700 ℃均匀化退火,酸洗去除表面氧化铁,将试样一端打磨倒角后,在ϕ150 mm×250 mm四辊可逆冷轧试验机上进行冷轧,冷轧后的钢板厚度为1.9 mm,总压下率为50%。采用KBF11Q型箱式退火炉对冷轧板进行双相区退火,退火温度为650,700,750,800 ℃,保温30 min后取出试样,空冷至室温。

    利用电火花线切割机将不同状态的试验钢沿轧向切割出表面尺寸为8 mm×12 mm的金相试样,经打磨、抛光,用体积分数4%的硝酸乙醇溶液腐蚀后,采用ZEISS Axio Vert.A1型光学显微镜(OM)和FEI-Quanta-650FEG型热场发射扫描电镜(SEM)观察显微组织。按照GB/T 228.1—2010,在不同状态的试验钢板上截取如图1所示的拉伸试样,采用Instron 3382型电子万能材料试验机进行室温拉伸试验,拉伸速度为0.007 5 mm·s−1,测3次取平均值。

    图  1  拉伸试样的尺寸
    Figure  1.  Size of tensile specimen

    图2可以看出,热轧态试验钢的组织主要由δ-铁素体、α-铁素体、渗碳体以及一些细小的碳化物组成,δ-铁素体呈条带状分布,α-铁素体与渗碳体弥散地分布在组织中,细小的碳化物分布在铁素体晶界处。组织中出现的粗大δ-铁素体条带是因为铝是铁素体强稳定元素,具有扩大铁素体相区的作用,当其质量分数大于3%时,在凝固进程中由液相转变生成的δ-铁素体在后续固态相变过程中不会发生转变,从而保留到室温[17]。α-铁素体和碳化物是奥氏体发生共析反应生成的。由铁碳相图可知,δ-铁素体与α-铁素体中碳固溶度分别为0.009%与0.0218%,在不存在奥氏体的情况下,未固溶的碳会与其他金属元素结合形成碳化物。试验钢中碳质量分数达到0.4%,远高于其在铁素体中的固溶度,因此晶界处形成碳化物。根据文献[18-20],在Fe-C-Mn-Al系高强钢晶界处分布的应为κ型碳化物。

    图  2  热轧态试验钢的显微组织
    Figure  2.  Microstructure of hot-rolled test steel: (a) OM morphology and (b) SEM morphology

    图3可以看出,经冷轧后试验钢中的组织未发生变化,仍然由δ-铁素体、α-铁素体、渗碳体以及一些细小的碳化物组成。冷轧后δ-铁素体条带厚度变薄,同时组织中部分碳化物破碎成短棒状。由于试验钢中锰含量较低,奥氏体的稳定性不高[21-22],因此在室温组织中未观察到奥氏体。

    图  3  冷轧态试验钢的显微组织
    Figure  3.  Microstructure of cold-rolled test steel: (a) OM morphology and (b) SEM morphology

    在退火过程中位错的数量和形态发生改变,位错密度降低,内部应力得到释放,钢的组织发生显著改变。由图4可知:当退火温度为650 ℃时,δ-铁素体保留着轧制后的拉长状态,未发生完全再结晶。在退火温度为700 ℃时,δ-铁素体晶粒发生回复,再结晶程度增加,出现无畸变的新的α-铁素体晶粒,碳化物开始溶解。此时,α-铁素体晶粒尺寸细小。随着退火温度升高至750 ℃,δ-铁素体晶粒再结晶程度进一步增加,α-铁素体晶粒尺寸增大,碳化物进一步溶解。此时,α-铁素体与渗碳体的分布最为均匀。在800 ℃退火时,δ-铁素体晶粒几乎发生完全再结晶,此时α-铁素体晶粒尺寸最大,碳化物数量最少。可知,随着退火温度的升高,δ-铁素体条带逐渐消失,再结晶程度增加,α-铁素体晶粒尺寸增大,κ型碳化物因溶解而数量减少。

    图  4  不同温度退火后试验钢的OM和SEM形貌
    Figure  4.  OM (a–d) and SEM (e–h) morphology of test steel annealed at different temperatures

    图5可以看出:热轧态试验钢经过冷轧后,其抗拉强度显著提高,断后伸长率显著降低,这是由于在冷轧过程中不同位错之间相互分割、缠绕,导致位错密度升高;不同温度退火态试验钢的拉伸曲线均未见明显的屈服平台,说明试验钢发生连续的均匀塑性变形。由表1可知:当退火温度为650 ℃时,试验钢的抗拉强度最高,断后伸长率最低,这是由于此时退火温度较低,试验钢组织再结晶程度低,位错数量减少的程度小;随着退火温度升高,抗拉强度和屈服强度整体呈降低趋势,断后伸长率增大,这是由于随着退火温度的升高,位错密度降低,再结晶程度增加,晶粒尺寸不断变大,碳化物数量减少。试验钢的强度随退火温度升高整体呈降低趋势,但750 ℃的强度略高于700 ℃,增幅很小,这归因于750 ℃退火组织中α-铁素体与渗碳体的分布更均匀弥散。当退火温度为750 ℃时,试验钢的强塑积最大,综合性能最好。

    图  5  不同处理态试验钢的拉伸工程应力-工程应变曲线
    Figure  5.  Tensile engineering stress-engineering strain curves of test steel in different treatment state
    表  1  不同温度退火后试验钢的拉伸性能
    Table  1.  Tensile properties of test steel annealedat different temperatures
    退火温度/℃屈服强度/MPa抗拉强度/MPa断后伸长率/%强塑积/(GPa·%)
    650901.91 061.212.112.84
    700791.9914.314.112.89
    750792.3927.115.414.28
    800622.4789.216.312.86
    下载: 导出CSV 
    | 显示表格

    通过工程应力-工程应变曲线得到加工硬化率-真应变曲线[23],如图6所示。由图6可以看出,不同温度退火试验钢的加工硬化率变化趋势基本一致,均可大致分为3个阶段[24]:第一阶段的初始加工硬化率很高,并呈直线下降趋势,此时试验钢由弹性变形转为塑性变形,加工硬化率最低点为塑性变形开始的位置;第二阶段初期,即塑性变形开始时,其加工硬化十分显著,加工硬化率呈直线上升趋势,在这一过程中组织中多组滑移系同时开动,位错之间相互割阶、缠结,位错密度迅速升高,当位错运动到晶界附近受到晶界阻碍,产生大量位错塞积,从而使试验钢的变形抗力提高;在第三阶段,随着真应变的增加,加工硬化率缓慢下降,这是由于此时滑移可借交滑移绕过阻碍,异号位错相互抵消[25]。退火温度为750 ℃时试验钢的加工硬化率在较大应变范围内保持较高的数值,其加工硬化能力大于退火温度为650,700,800 ℃时,这归因于750 ℃退火后组织中α-铁素体与渗碳体的分布更均匀弥散。

    图  6  不同温度退火试验钢的加工硬化率-真应变曲线
    Figure  6.  Work hardening rate-true strain curves of test steel annealed at different temperatures

    (1)热轧和冷轧态试验钢的显微组织均主要由δ-铁素体、α-铁素体、渗碳体以及细小的κ型碳化物组成;不同温度退火后组织类型未发生明显改变,但随着退火温度的升高,δ-铁素体条带消失,再结晶程度增加,α-铁素体晶粒尺寸增大,碳化物数量减少。750 ℃退火后α-铁素体与渗碳体的分布最为均匀。

    (2)不同温度退火后试验钢的拉伸曲线均未见明显的屈服平台,说明试验钢发生连续的均匀塑性变形;随着退火温度的升高,试验钢的抗拉强度、屈服强度整体呈降低趋势,断后伸长率呈增大趋势。当退火温度为750 ℃时,试验钢的强塑积最大,为14.28 GPa·%,加工硬化能力最好,综合性能最好。

  • 图  1   拉伸试样的尺寸

    Figure  1.   Size of tensile specimen

    图  2   热轧态试验钢的显微组织

    Figure  2.   Microstructure of hot-rolled test steel: (a) OM morphology and (b) SEM morphology

    图  3   冷轧态试验钢的显微组织

    Figure  3.   Microstructure of cold-rolled test steel: (a) OM morphology and (b) SEM morphology

    图  4   不同温度退火后试验钢的OM和SEM形貌

    Figure  4.   OM (a–d) and SEM (e–h) morphology of test steel annealed at different temperatures

    图  5   不同处理态试验钢的拉伸工程应力-工程应变曲线

    Figure  5.   Tensile engineering stress-engineering strain curves of test steel in different treatment state

    图  6   不同温度退火试验钢的加工硬化率-真应变曲线

    Figure  6.   Work hardening rate-true strain curves of test steel annealed at different temperatures

    表  1   不同温度退火后试验钢的拉伸性能

    Table  1   Tensile properties of test steel annealedat different temperatures

    退火温度/℃屈服强度/MPa抗拉强度/MPa断后伸长率/%强塑积/(GPa·%)
    650901.91 061.212.112.84
    700791.9914.314.112.89
    750792.3927.115.414.28
    800622.4789.216.312.86
    下载: 导出CSV
  • [1] ZHAO J W ,JIANG Z Y. Thermomechanical processing of advanced high strength steels[J]. Progress in Materials Science,2018,94:174-242.
    [2] YOSHIMASA F ,YASUNOBU N. High strength steel sheets for weight reduction of automobiles[J]. JFE Techinque Report,2018,41(2):1-8.
    [3] 康永林,丁波,陈其安. 我国轧制学科发展现状与趋势分析及展望[J]. 轧钢,2017,34(6):1-9.

    KANG Y L ,DING B ,CHEN Q A. Analysis and prospect of developing status and trends of rolling discipline in China[J]. Steel Rolling,2017,34(6):1-9.

    [4] ZHOU N P ,SONG R B ,LI X ,et al. Dependence of austenite stability and deformation behavior on tempering time in an ultrahigh strength medium Mn TRIP steel[J]. Materials Science and Engineering:A,2018,738:153-162.
    [5] 韩志勇,张明达,徐海峰,等. 高性能汽车钢组织性能特点及未来研发方向[J]. 钢铁,2016,51(2):1-9.

    HAN Z Y ,ZHANG M D ,XU H F ,et al. Research and application of high performance automobile steel[J]. Iron & Steel,2016,51(2):1-9.

    [6] SOHN S S ,LEE B J ,LEE S ,et al. Effects of aluminum content on cracking phenomenon occurring during cold rolling of three ferrite-based lightweight steel[J]. Acta Materialia,2013,61(15):5626-5635.
    [7] 邢梅,林方敏,唐立志,等. Al元素对Fe-Mn-Al-C系低密度钢的影响特性综述[J]. 中国冶金,2022,32(2):15-26.

    XING M ,LIN F M ,TANG L Z ,et al. Effect of Al on properties of Fe-Mn-Al-C low density steel[J]. China Metallurgy,2022,32(2):15-26.

    [8] LI Z C ,ZHANG X T ,MOU Y J ,et al. The impact of intercritical annealing in conjunction with warm deformation process on microstructure,mechanical properties and TRIP effect in medium-Mn TRIP steels[J]. Materials Science and Engineering:A,2019,746:363-371.
    [9] MOU Y J ,LI X J ,LI Z C ,et al. Elevation of impact toughness of medium-manganese trip-steel 0.2% C-6%Mn-3% Al due to evolution of microstructure under heat treatment[J]. Metal Science and Heat Treatment,2021,63(1/2):26-33.
    [10] LI Z C ,LI X J ,MOU Y J ,et al. The significance of microstructural evolution on governing impact toughness of Fe-0.2C-6Mn-3Al medium-Mn TRIP steel studied by a novel heat treatment[J]. International Journal of Materials Research,2021,112(4):271-279.
    [11] 刘春泉,彭其春,薛正良,等. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报,2019,33(15):2572-2581.

    LIU C Q ,PENG Q C ,XUE Z L ,et al. Research situation of Fe-Mn-Al-C system low-density high-strength steel[J]. Materials Reports,2019,33(15):2572-2581.

    [12] YI H L ,LEE K Y ,LIM J H ,et al. Spot weldability of δ-TRIP steel containing 0.4 wt-%C[J]. Science and Technology of Welding and Joining,2010,15(7):619-624.
    [13] 宋宏伟,李慧蓉,高建新,等. 合金元素对Fe-Mn-Al-C系轻质钢组织和性能影响的研究现状[J]. 热加工工艺,2019,48(6):19-22.

    SONG H W ,LI H R ,GAO J X ,et al. Research status on effect of alloying elements on microstructure and properties of Fe-Mn-Al-C based lightweight steel[J]. Hot Working Technology,2019,48(6):19-22.

    [14] 杨丽芳,魏焕君,孙力,等. 退火温度对冷轧中锰钢组织性能和断裂行为的影响[J]. 钢铁,2019,54(11):80-87.

    YANG L F ,WEI H J ,SUN L ,et al. Effect of annealing temperatures on microstructures,mechanical properties and fracture behavior of a cold-rolled medium-Mn steel[J]. Iron & Steel,2019,54(11):80-87.

    [15] 余鹏飞,胡钱钱,夏培康,等. Fe15Mn0.8C-Al-Si热轧轻质高强钢的组织与性能[J]. 上海金属,2017,39(1):33-37.

    YU P F ,HU Q Q ,XIA P K ,et al. Microstructure and mechanical properties of hot rolled Fe15Mn0.8C-Al-Si light-weight high strength steel[J]. Shanghai Metals,2017,39(1):33-37.

    [16] 严玲,唐荻,米振莉,等. 不同加工工艺对高强高塑性TWIP钢组织与性能的影响[J]. 热加工工艺,2005,34(8):15-17.

    YAN L ,TANG D ,MI Z L ,et al. Effect of working processes on microstructure and mechanical property of TWIP steel with high strength and high plasticity[J]. Hot Working Technology,2005,34(8):15-17.

    [17] 王宇辰,冯运莉,郭雪霏. Mn含量对Mn-Al系TRIP钢组织和力学性能的影响[J]. 华北理工大学学报(自然科学版),2019,41(2):31-36.

    WANG Y C ,FENG Y L ,GUO X F. Effect of Mn content on microstructure and mechanical properties of Mn-Al TRIP steel[J]. Journal of North China University of Science and Technology(Natural Science Edition),2019,41(2):31-36.

    [18] CHOI K ,SEO C H ,LEE H ,et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-08C steel[J]. Scripta Materialia,2010,63(10):1028-1031.
    [19] YOO J D ,PARK K T. Microband-induced plasticity in a high Mn-Al-C light steel[J]. Materials Science and Engineering:A,2008,496(1/2):417-424.
    [20] PARK K T. Tensile deformation of low-density Fe-Mn-Al-C austenitic steels at ambient temperature[J]. Scripta Materialia,2013,68(6):375-379.
    [21] 谢钊远,林关强,王定峰,等. Fe-C-Mn-Si-Al双相钢两相区加热过程中的奥氏体相变行为研究[J]. 热加工工艺,2024,53(17):127-130.

    XIE Z Y ,LIN G Q ,WANG D F ,et al. Research on austenite transformation behavior of Fe-C-Mn-Si-Al dual-phase steel during heating in two-phase region[J]. Hot Working Technology,2024,53(17):127-130.

    [22] 卢云,高杰,刘剑辉. 基于热加工图的双相不锈钢热成形机制及工艺优化[J]. 上海金属,2023,45(1):58-67.

    LU Y ,GAO J ,LIU J H. Hot forming mechanism and process optimization of duplex stainless steel based on hot working map[J]. Shanghai Metals,2023,45(1):58-67.

    [23] HAN D ,XU Y ,LIU R ,et al. Improving Mn partitioning and mechanical properties through carbides-enhancing pre-annealing in Mn-reduced transformation-induced plasticity steel[J]. Scripta Materialia,2020,187:274-279.
    [24] LIU G L ,LIU K ,ZHANG M H ,et al. Effect of cold rolling reduction ratio on microstructure and mechanical properties of Fe-10Mn-4Al-0.4C steel containing δ ferrite[J]. Materials Science and Engineering:A,2023,867:144715.
    [25] LI M ,YIN T ,WANG Y ,et al. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro[J]. Materials Science and Engineering:C,2014,43:641-648.
图(6)  /  表(1)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  6
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-06
  • 修回日期:  2024-09-18
  • 刊出日期:  2024-12-19

目录

/

返回文章
返回