• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

冷喷涂过程中颗粒加速特性的数值模拟

董脉鸣, 辛红敏, 李光平, 代辉, 程清思, 姚倡锋, 崔敏超

董脉鸣, 辛红敏, 李光平, 代辉, 程清思, 姚倡锋, 崔敏超. 冷喷涂过程中颗粒加速特性的数值模拟[J]. 机械工程材料, 2024, 48(9): 87-95. DOI: 10.11973/jxgccl230371
引用本文: 董脉鸣, 辛红敏, 李光平, 代辉, 程清思, 姚倡锋, 崔敏超. 冷喷涂过程中颗粒加速特性的数值模拟[J]. 机械工程材料, 2024, 48(9): 87-95. DOI: 10.11973/jxgccl230371
DONG Maiming, XIN Hongmin, LI Guangping, DAI Hui, CHENG Qingsi, YAO Changfeng, CUI Minchao. Numerical Simulation of Particle Acceleration Characteristics During Cold Spraying[J]. Materials and Mechanical Engineering, 2024, 48(9): 87-95. DOI: 10.11973/jxgccl230371
Citation: DONG Maiming, XIN Hongmin, LI Guangping, DAI Hui, CHENG Qingsi, YAO Changfeng, CUI Minchao. Numerical Simulation of Particle Acceleration Characteristics During Cold Spraying[J]. Materials and Mechanical Engineering, 2024, 48(9): 87-95. DOI: 10.11973/jxgccl230371

冷喷涂过程中颗粒加速特性的数值模拟

基金项目: 

“新能源汽车与智慧交通”湖北省优势特色学科群资助项目 

湖北文理学院研究生教育优秀成果培育项目 

航空发动机高性能制造工信部重点实验室(西北工业大学)开放课题 HPM-2022-04

2023年襄阳市科技计划项目(关键核心技术攻关专项) 

详细信息
    作者简介:

    董脉鸣(1999—),男,湖北襄阳人,硕士研究生

    通讯作者:

    通信作者(导师):辛红敏教授

  • 中图分类号: TG174.4

Numerical Simulation of Particle Acceleration Characteristics During Cold Spraying

  • 摘要:

    采用ANSYS FLUENT软件建立冷喷涂过程中颗粒沉积的有限元模型,通过颗粒撞击速度的估算公式进行了验证;采用有限元模型开展了载气压力(0.5,0.7,0.9,1.1,1.3 MPa)、载气温度(400,500,600,700,800 K)、喷涂距离(15,20,25,30,35 mm)等工艺参数对颗粒加速特性的单因素影响研究,通过响应曲面法分析工艺参数对颗粒加速特性的交互影响规律。结果表明:不同工艺参数下颗粒撞击速度模拟值与估算值的平均相对误差为5.37%,验证了有限元模型的可靠性。随着载气压力的增加,颗粒速度增大,相邻载气压力下颗粒撞击速度的平均增加幅度为50 m·s−1,颗粒温度变化不明显;随着载气温度升高,颗粒温度升高,相邻载气温度下颗粒撞击温度的平均增加幅度为60 K,颗粒速度变化不明显;随着喷涂距离的增加,颗粒速度和颗粒温度均变化不明显。载气压力对颗粒速度的影响最为显著,载气温度次之,喷涂距离的影响最不显著。载气压力与载气温度的交互作用对颗粒速度的影响最为显著,载气压力与喷涂距离次之,载气温度与喷涂距离交互作用的影响最小。

    Abstract:

    A finite element model of particle deposition during cold spraying was established by ANSYS FLUENT software, and was verified by estimation formula of particle impact velocity. Single factor influence research of gas pressure (0.5,0.7,0.9,1.1,1.3 MPa), gas temperature (400,500,600,700,800 K), and standoff distance (15,20,25,30,35 mm) on particle acceleration characteristics was conducted by the finite element model. The effect of interaction between process parameters on particle acceleration characteristics was analyzed by response surface methodology. The results show that the average relative error between simulated and estimated particle impact velocities under different process parameters was 5.37%, which verified the reliability of the finite element model. With the increase of gas pressure, the particle velocity increased, with the average increase of particle impact velocity under adjacent gas pressure of 50 m · s−1, but the particle temperature did not change significantly. With the increase of gas temperature, the particle temperature increased, with the average increase of particle impact temperature under adjacent gas temperature of 60 K, but the particle velocity did not change significantly. As the standoff distance increased, the particle velocity and particle temperature did not change significantly. The gas pressure had the most significant effect on particle velocity, followed by gas temperature, and the standoff distance had the least effect. The interaction of gas pressure and gas temperature had the most significant effect on particle velocity, followed by the interaction of gas pressure and standoff distance, and the interaction of gas temperature and spraying distance had the least effect.

  • 酸性气田中存在H2S和CO2等腐蚀介质,在进行开发时管材的腐蚀已成为一个巨大的难题,并且若存在单质硫,腐蚀更加严重[1-9]。在这种高酸性环境中,管道的选材转向抗H2S和单质硫腐蚀能力更强的Ni-Fe-Cr三元合金或Ni-Cr-Fe-Mo-Cu多元合金,如元坝气田采用了028、825、G3等镍基合金管[10],普光气田采用了718等镍基合金管[11]

    镍基合金具有优异的防腐性能,但在高温、H2S、CO2与单质硫的环境中仍可能发生较为严重的腐蚀。方建波等[12]分析了某热采井中825合金的腐蚀原因,发现在高温高压环境中825合金发生了氧腐蚀与硫腐蚀。张瑞等[13]发现在205 ℃,含H2S、CO2、氯离子及单质硫的环境中,718合金发生明显的点蚀与均匀腐蚀,高温下的单质硫直接或间接与金属发生反应导致大面积的均匀腐蚀。根据ISO15156—2020,在温度高于132 ℃时,825等镍基合金在含单质硫环境下的适用性并不明确,而目前对高含硫环境中825合金的耐局部腐蚀能力的研究较少。为此,作者根据某高酸性气田生产工况,利用高温高压反应釜模拟出高温,含H2S、CO2、氯离子的气田模拟地层水环境,并对825合金进行腐蚀挂片试验,对比分析了825合金在含单质硫与不含单质硫条件下的局部腐蚀行为,以期为在含单质硫酸性气田中管道的选材提供一定指导。

    试验材料选用新的825合金无缝管,由江苏武进不锈股份有限公司提供,外径为168.3 mm,壁厚为14.3 mm,化学成分如表1所示。在825合金管上截取尺寸为30 mm×15 mm×3 mm的腐蚀挂片试样,将试样用300#,600#,800#,1200#砂纸逐级打磨,经石油醚、无水乙醇清洗并风干后,用精度为0.1 mg的电子天平称取质量并置于干燥皿中待用。

    表  1  825合金的化学成分
    Table  1.  Chemical composition of 825 alloy
    元素CCrNiMoTiSiCuPMnFe
    质量分数/%0.01421.2639.542.890.810.181.820.010.4433.04
    下载: 导出CSV 
    | 显示表格

    采用西南石油大学自研的高温高压反应釜进行腐蚀挂片试验,试验溶液为某高酸性气田模拟地层水,组成见表2,采用NaCl(分析纯)、Na2SO4(分析纯)、NaHCO3(分析纯)、CaCl2(分析纯)、MgCl2·6H2O(分析纯)、KCl(分析纯)及去离子水(一级水)配制。在高温高压反应釜中加入2 L试验溶液,将试样挂在试样架上并放入反应釜中,然后关闭反应釜并密封;向高温高压反应釜中持续通入低流量高纯氮除氧2 h,之后将反应釜温度升至132 ℃,待温度稳定后,先向釜内通入H2S使压力达到4.8 MPa,然后通入CO2达到总压6.4 MPa。试验设置5种工况:工况1为不添加单质硫腐蚀6 d;工况2~5均以熔覆的方式添加单质硫(试验开始前将单质硫与试样紧密包裹,放入高温高压釜中,待温度上升至132 ℃后,单质硫即处于熔覆态,与试样充分接触),添加量为每升试验溶液中添加10 g单质硫,腐蚀时间分别为3,6,9,12 d。不同试验条件下均设置5个平行试样,其中3个试样用于计算腐蚀速率,其余2个试样用于腐蚀形貌观察及微区成分分析。

    表  2  气田模拟地层水的组成
    Table  2.  Composition of simulated formation water in gasfield
    组成Na++K+Ca2+Mg2+ClSO42-HCO3-
    质量浓度/(mg·L−131 7023727342 7508 816824
    下载: 导出CSV 
    | 显示表格

    用去膜液(10 g六次甲基四胺+100 mL浓盐酸+去离子水定容至1 L)去除试样表面腐蚀产物,再用去离子水清洗,无水乙醇脱水后风干;用精度为0.1 mg的电子天平称取腐蚀后的试样质量,取3个试样的平均值计算腐蚀速率,计算公式为

    v=87600ΔmρAt (1)

    式中:v为腐蚀速率,mm·a−1;Δm为腐蚀前后试样的质量差,g;ρ为试样密度,g·cm−3A为试样表面积,cm2t为腐蚀时间,h。

    采用FRI Quanta 650 FEG型扫描电镜(SEM)观察试样的腐蚀形貌,用附带的能谱仪(EDS)分析腐蚀产物的元素组成。采用VHX-7000型景深三维显微镜观察试样的局部腐蚀形貌。

    图1可见:在未添加单质硫腐蚀6 d(工况1)条件下,825合金表面仍有金属光泽,几乎未见腐蚀现象;在添加单质硫腐蚀3 d(工况2)条件下,合金表面存在肉眼可见的点蚀,当腐蚀时间延长至6,9,12 d(工况3,4,5)时,表面存在明显的局部腐蚀坑,并且局部腐蚀坑的面积随腐蚀时间的延长而增大,说明局部腐蚀随时间延长越发严重。

    图  1  不同工况下825合金的宏观腐蚀形貌
    Figure  1.  Corrosion macromorphology of 825 alloy under different conditions: (a) condition 1; (b) condition 2; (3) condition 3; (d) condition 4 and (e) condition 5

    图2可知:在未添加单质硫腐蚀6 d时,825合金表面较平整,腐蚀痕迹轻微;添加单质硫后,随着腐蚀时间由3 d延长至12 d,合金表面的局部腐蚀坑最大深度由7.95 μm增大到48.29 μm,并且局部腐蚀坑的面积也增大。与未添加单质硫腐蚀6 d条件下(局部腐蚀最大深度2.63 μm)相比,添加单质硫腐蚀6 d时合金的局部腐蚀坑最大深度增加到15.41 μm,局部腐蚀程度加重。

    图  2  不同工况下825合金的局部腐蚀形貌
    Figure  2.  Local corrosion morphology of 825 alloy under different conditions: (a) condition 1; (b) condition 2; (3) condition 3; (d) condition 4 and (e) condition 5

    工况1、工况2、工况3、工况4、工况5下合金的腐蚀速率分别为0.007 7,0.055 2,0.073 6,0.088 0,0.114 5 mm·a−1。对比可知,添加单质硫腐蚀6 d时,825合金的腐蚀速率相比于未添加单质硫腐蚀6 d时增大了8.56倍,这可能是因为单质硫使825合金表面形成的钝化膜结构与成分发生了变化[14],对基体的保护作用有所减弱。添加单质硫条件下825合金的腐蚀速率随着腐蚀时间的延长逐渐增大。

    图3表3可以看出:在未添加单质硫腐蚀6 d条件下,825合金表面光滑,仍可见加工痕迹,几乎未被腐蚀,腐蚀产物极少,腐蚀产物中的硫含量极低,碳、氧含量也较低,判断表面形成FeCO3产物膜[15-16];在添加单质硫条件下,随着腐蚀时间的延长,合金表面腐蚀产物增多,腐蚀产物中碳、氧、硫含量均增加,铁、铬、镍含量均降低,判断腐蚀产物主要为FeCO3与FeS[17-18]。与未添加单质硫腐蚀6 d时相比,添加单质硫腐蚀6 d时合金表面的腐蚀产物明显增多。

    图  3  不同工况下825合金的SEM腐蚀形貌
    Figure  3.  SEM corrosion morphology of 825 alloy under different conditions: (a) condition 1; (b) condition 2; (3) condition 3; (d) condition 4 and (e) condition 5
    Table  3.  EDS analysis results of corrosion product (box area in Fig. 3) on surface of 825 alloy under different conditions
    工况质量分数/%
    COSCrFeNiTiCu
    15.710.910.2821.7229.9338.660.991.80
    26.520.830.9221.0930.3337.660.831.82
    37.631.361.9920.7429.7836.150.801.55
    48.023.283.4020.6927.8534.460.871.43
    59.574.674.5220.0924.7534.320.681.40
    下载: 导出CSV 
    | 显示表格

    图4可见,在添加单质硫腐蚀12 d条件下,825合金表面呈现出2种腐蚀形貌,一部分表面较平整,另一部分表面破裂且存在腐蚀产物的堆积。碳元素和氧元素的分布规律一致,结合铁元素的分布判断腐蚀产物为FeCO3。结合铁元素与硫元素的分布可知,表面破裂区域的FeS腐蚀产物膜发生剥落,导致硫元素继续向内部沉积并富集,从而加剧了腐蚀[19-20]。当温度高于单质硫熔点(120 ℃)时,合金表面的单质硫极易发生歧化反应生成H2S与H2SO4,产生大量H+造成局部酸化,使钝化膜溶解;生成的S2−可与Cl及OH竞争吸附于部分氧空位处,并逐渐在钝化膜表层形成金属硫化物FeS,同时S2−借助空位迁移扩散到钝化膜内层,降低钝化膜的完整性,并形成点蚀核。随着腐蚀时间的延长,基体与腐蚀介质接触的时间延长,导致腐蚀区域扩大,从而形成局部腐蚀坑[21-22]。综上,在含单质硫条件下,825合金的局部腐蚀严重,因此在实际应用中,建议使用溶硫剂等措施来增加825合金的安全服役寿命。

    图  4  工况5下825合金表面局部腐蚀坑处的SEM形貌和元素面扫描结果
    Figure  4.  SEM morphology (a) and element surface scan results (b) at local corrosion pit on 825 alloy surface under condition 5

    (1)在132 ℃、H2S分压4.8 MPa、CO2分压1.6 MPa、氯离子质量浓度42 750 mg·L−1的模拟地层水环境中,825合金几乎不发生腐蚀,但添加单质硫后,825合金发生了严重的局部腐蚀,且随腐蚀时间由3 d延长至12 d,腐蚀程度加剧,局部腐蚀坑面积增大,腐蚀坑最大深度由7.95 μm增大到48.29 μm。

    (2)添加单质硫腐蚀6 d时825合金的腐蚀速率相比未添加单质硫腐蚀6 d时增大8.56倍,且随着腐蚀时间的延长,腐蚀速率逐渐增大。在不含单质硫条件下合金表面腐蚀产物极少,主要为FeCO3,在含单质硫条件下,随着腐蚀时间的延长,表面腐蚀产物增多,主要为FeCO3与FeS。在高于单质硫熔点(120 ℃)的高温条件下,单质硫发生歧化反应产生H+和S2−,使825合金表面腐蚀产物膜破裂,从而加剧局部腐蚀,降低了825合金的耐腐蚀性能。

  • 图  1   喷管和基板的几何结构、边界条件和模型的网格划分

    Figure  1.   Geometric structure and boundary conditions for nozzle and substrate plate (a) and meshing of model (b)

    图  2   气流速度和气流温度随轴向距离的变化曲线

    Figure  2.   Curves of airflow velocity and airflow temperature vs axial distance

    图  3   不同载气压力下颗粒速度和温度随轴向距离的变化曲线

    Figure  3.   Particle velocity (a) and temperature (b) vs axial distance curves under different gas pressures

    图  4   不同载气压力下喷管出口与基板之间区域的气流速度场和温度场云图

    Figure  4.   Cloud diagrams of airflow velocity field (a) and temperature field (b) of area between nozzle outlet and substrate plate under different gas pressures

    图  5   不同载气温度下颗粒速度和温度随轴向距离的变化曲线

    Figure  5.   Particle velocity (a) and temperature (b) vs axial distance curves under different gas temperatures

    图  6   不同载气温度下喷管出口与基板之间区域的气流速度场和温度场云图

    Figure  6.   Cloud diagrams of airflow velocity field (a) and temperature field (b) of area between nozzle outlet and substrate plate under different gas temperatures

    图  7   不同喷涂距离下颗粒速度和温度随轴向距离的变化曲线

    Figure  7.   Particle velocity (a) and temperature (b) vs axial distance curves under different standoff distances

    图  8   不同喷涂距离下喷管出口与基板之间区域的气流速度场和温度场云图

    Figure  8.   Cloud diagrams of airflow velocity field (a) and temperature field (b) of area between nozzle outlet and substrate plate under different standoff distances

    图  9   不同工艺参数交互作用的响应曲面

    Figure  9.   Response surface of interaction of different process parameters: (a) gas pressure and gas temperature; (b) gas pressure and standoff distance and (c) gas temperature and standoff distance

    表  1   颗粒撞击速度估算值与模拟值的对比以及相对误差

    Table  1   Comparison between calculation and simulation for particle impact velocity and relative error

    载气压力/MPa载气温度/K喷涂距离/mm颗粒撞击速度/(m·s−1)相对误差/%
    估算值模拟值
    0.560025673.61641.374.8
    0.7754.85704.496.7
    0.9796.53753.375.4
    1.1835.38794.054.9
    1.3871.72826.535.2
    0.940025743.76695.216.5
    500767.35727.165.2
    600796.53753.375.4
    700817.69775.525.2
    800851.07794.626.6
    0.960015765.34735.863.9
    20779.62745.214.4
    25796.53753.375.4
    30801.43760.785.1
    35815.14767.795.8
    下载: 导出CSV

    表  2   响应面回归模型显著性检验

    Table  2   Significant experiment of response surface regression model

    方差来源均方自由度平方和FP显著性
    模型91 980.68910 220.081 277.48<0.000 1显著
    A67 975.38167 975.388 496.76<0.000 1显著
    B19 373.98119 373.982 421.70<0.000 1显著
    C1 731.0711 731.07216.38<0.000 1显著
    AB232.871232.8729.110.001 0显著
    AC130.991130.9916.370.004 9显著
    BC8.5018.501.060.337 0不显著
    A21 857.6411 857.64232.20<0.000 1显著
    B2465.491465.4958.190.000 1显著
    C240.78140.785.100.058 5不显著
    残差56.0078.00
    失拟项18.3436.110.650.623 5不显著
    纯误差37.6649.42
    总和92 036.6816
    下载: 导出CSV
  • [1] 熊天英,王吉强.中国科学院金属研究所冷喷涂技术研究进展[J].金属学报,2023,59(4):537-546.

    XIONG T Y ,WANG J Q. Research progress of cold spray in institute of metal research,Chinese academy of sciences[J]. Acta Metallurgica Sinica,2023,59(4):537-546.

    [2] KUMAR S,ZUNAID M,MURTAZA Q,et alSimulation of injector in cold spray process by fluent-6International Conference of Advance Research and Innovation (ICARI-2015)2015KUMAR S ,ZUNAID M ,MURTAZA Q ,et al. Simulation of injector in cold spray process by fluent-6[D]// International Conference of Advance Research and Innovation (ICARI-2015). [S.l.]:[s.n.],2015.
    [3] TAN A W Y ,LEK J Y ,SUN W ,et al. Influence of particle velocity when propelled using N2 or N2-He mixed gas on the properties of cold-sprayed Ti6Al4V coatings[J]. Coatings,2018,8(9):327.
    [4] NEO R G ,WU K Q ,TAN S C ,et al. Effect of spray distance and powder feed rate on particle velocity in cold spray processes[J]. Metals,2022,12(1):75.
    [5] MORENO-MURGUIA B ,MORA-GARCIA A G ,CANALES-SILLER H ,et al. Influence of stand-off distance and pressure in copper coatings deposition efficiency and particle velocity[J]. Surface and Coatings Technology,2022,430:127986.
    [6] 唐文勇,张克声,蒋学勤,等.主气流温度对高压冷喷涂粉末速度和温度的影响[J].表面技术,2016,45(9):38-43.

    TANG W Y ,ZHANG K S ,JIANG X Q ,et al. Effects of main gas temperature on powder velocity and temperature in high pressure cold spraying[J]. Surface Technology,2016,45(9):38-43.

    [7] 朱红波.Laval喷管喉部结构对冷喷涂气固两相流速度的影响[J].南方农机,2021,52(12):130-131.

    ZHU H B. Influence of Laval nozzle throat structure on gas-solid two-phase flow velocity of cold spray[J]. China Southern Agricultural Machinery,2021,52(12):130-131.

    [8] 张创高压冷喷涂中送粉气流对粒子流撞击特性的影响重庆重庆大学2016张创.高压冷喷涂中送粉气流对粒子流撞击特性的影响[D].重庆:重庆大学,2016.

    ZHANG CEffect of the powder carrier gas on powder stream impact characteristics in high-pressure cold sprayChongqingChongqing University2016ZHANG C. Effect of the powder carrier gas on powder stream impact characteristics in high-pressure cold spray[D]. Chongqing:Chongqing University,2016.

    [9] YIN S ,LIU Q ,LIAO H L ,et al. Effect of injection pressure on particle acceleration,dispersion and deposition in cold spray[J]. Computational Materials Science,2014,90:7-15.
    [10] LUPOI R ,O'NEILL W. Powder stream characteristics in cold spray nozzles[J]. Surface and Coatings Technology,2011,206(6):1069-1076.
    [11] HUANG G S ,GU D M ,LI X B ,et al. Numerical simulation on syphonage effect of Laval nozzle for low pressure cold spray system[J]. Journal of Materials Processing Technology,2014,214(11):2497-2504.
    [12] YIN S ,MEYER M ,LI W Y ,et al. Gas flow,particle acceleration,and heat transfer in cold spray:A review[J]. Journal of Thermal Spray Technology,2016,25(5):874-896.
    [13] 刘陈光冷气体动力喷涂过程中颗粒的加速性能及沉积机理分析衡阳南华大学2015刘陈光.冷气体动力喷涂过程中颗粒的加速性能及沉积机理分析[D].衡阳:南华大学,2015.

    LIU C GThe analysis on the particles' acceleration performance and deposition mechanism in the cold-gas dynamic spraying processesHengyangUniversity of South China2015LIU C G. The analysis on the particles' acceleration performance and deposition mechanism in the cold-gas dynamic spraying processes[D]. Hengyang:University of South China,2015.

    [14] 郑建新,金耀辉,刘传绍.真空冷喷涂铜颗粒加速特性数值研究[J].表面技术,2013,42(1):5-8.

    ZHENG J X ,JIN Y H ,LIU C S. Numerical study on accelerating characteristics of copper particles in vacuum cold spraying process[J]. Surface Technology,2013,42(1):5-8.

    [15] 殷硕冷喷涂粉末粒子加速行为及沉积机理的研究大连大连理工大学2012殷硕.冷喷涂粉末粒子加速行为及沉积机理的研究[D].大连:大连理工大学,2012.

    YIN SA systematic investigation on the acceleration behavior and deposition mechanism of cold sprayed particlesDalianDalian University of Technology2012YIN S. A systematic investigation on the acceleration behavior and deposition mechanism of cold sprayed particles[D]. Dalian:Dalian University of Technology,2012.

    [16] LEITZ K H ,O'SULLIVAN M ,PLANKENSTEINER A ,et al. CFDEM modelling of particle heating and acceleration in cold spraying[J]. International Journal of Refractory Metals and Hard Materials,2018,73:192-198.
    [17] 冯力,关畅,畅继荣,等.喷涂距离对铝基体上低压冷喷涂铜涂层的影响[J].热加工工艺,2020,49(6):94-97.

    FENG L ,GUAN C ,CHANG J R ,et al. Influence of spraying distance on low pressure cold sprayed copper coating on aluminum substrate[J]. Hot Working Technology,2020,49(6):94-97.

    [18] 唐伟,解闻,张家园.冷喷涂镁合金基体残余应力的数值研究[J].表面技术,2021,50(1):62-70.

    TANG W ,XIE W ,ZHANG J Y. Numerical study on residual stress of cold sprayed Mg-alloy substrate[J]. Surface Technology,2021,50(1):62-70.

    [19] GRUJICIC M ,ZHAO C L ,TONG C ,et al. Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process[J]. Materials Science and Engineering:A,2004,368(1/2):222-230.
    [20] SONG X ,NG K L ,CHEA J M K ,et al. Coupled Eulerian-Lagrangian (CEL) simulation of multiple particle impact during metal cold spray process for coating porosity prediction[J]. Surface and Coatings Technology,2020,385:125433.
    [21] 解闻镁合金表面冷喷涂Al-7075涂层形貌及残余应力研究西安西安科技大学2021解闻.镁合金表面冷喷涂Al-7075涂层形貌及残余应力研究[D].西安:西安科技大学,2021.

    XIE WStudy on appearance and residual stress of cold spray Al-7075 coating on Mg-alloy surfaceXi'anXi'an University of Science and Technology2021XIE W. Study on appearance and residual stress of cold spray Al-7075 coating on Mg-alloy surface[D]. Xi'an:Xi'an University of Science and Technology,2021.

    [22] LIN E Q ,CHEN Q Y ,OZDEMIR O C ,et al. Effects of interface bonding on the residual stresses in cold-sprayed Al-6061:a numerical investigation[J]. Journal of Thermal Spray Technology,2019,28(3):472-483.
    [23] TANG W ,ZHANG J Y ,LI Y ,et al. Numerical simulation of the cold spray deposition of copper particles on polyether ether ketone (PEEK) substrate[J]. Journal of Thermal Spray Technology,2021,30(7):1792-1809.
    [24] WAN W P ,LI W Y ,WU D ,et al. New insights into the effects of powder injector inner diameter and overhang length on particle accelerating behavior in cold spray additive manufacturing by numerical simulation[J]. Surface and Coatings Technology,2022,444:128670.
图(9)  /  表(2)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  4
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-08
  • 修回日期:  2024-07-20
  • 刊出日期:  2024-09-19

目录

/

返回文章
返回