• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

不同含氢环境下X80管线钢的慢应变速率拉伸性能

牛化昶, 李毅, 宋卫臣, 吕加华

牛化昶, 李毅, 宋卫臣, 吕加华. 不同含氢环境下X80管线钢的慢应变速率拉伸性能[J]. 机械工程材料, 2025, 49(3): 100-104. DOI: 10.11973/jxgccl230479
引用本文: 牛化昶, 李毅, 宋卫臣, 吕加华. 不同含氢环境下X80管线钢的慢应变速率拉伸性能[J]. 机械工程材料, 2025, 49(3): 100-104. DOI: 10.11973/jxgccl230479
NIU Huachang, LI Yi, SONG Weichen, LYU Jiahua. Slow Strain Rate Tensile Properties of X80 Pipeline Steel in Different Hydrogen-Containing Environments[J]. Materials and Mechanical Engineering, 2025, 49(3): 100-104. DOI: 10.11973/jxgccl230479
Citation: NIU Huachang, LI Yi, SONG Weichen, LYU Jiahua. Slow Strain Rate Tensile Properties of X80 Pipeline Steel in Different Hydrogen-Containing Environments[J]. Materials and Mechanical Engineering, 2025, 49(3): 100-104. DOI: 10.11973/jxgccl230479

不同含氢环境下X80管线钢的慢应变速率拉伸性能

详细信息
    作者简介:

    牛化昶(1975—),男,山东济南人,高级工程师,学士

  • 中图分类号: TE832

Slow Strain Rate Tensile Properties of X80 Pipeline Steel in Different Hydrogen-Containing Environments

  • 摘要:

    在气体组成(体积分数)为2% H2+2% CO2+N2(2%氢环境)、5% H2+2% CO2+N2(5%氢环境)以及100% N2(无氢环境)的12 MPa高压环境中,对X80管线钢母材轴向、周向试样以及焊缝试样开展慢应变速率拉伸试验,研究了不同环境下试样的拉伸性能,基于断面收缩率评价了母材和焊缝的氢脆敏感性。结果表明:与无氢环境相比,2%氢环境、5%氢环境下母材轴向试样的断后伸长率分别降低约1%和5%,母材周向试样分别降低约7%和11%,焊缝分别降低约7%和12%,焊缝的塑性劣化程度大于母材,且在5%氢环境中的劣化程度更大;在2%和5%氢环境中母材和焊缝的抗拉强度基本相似;在相同含氢环境中母材周向试样的抗拉强度高于轴向试样,焊缝的抗拉强度最低,母材轴向试样的塑性优于周向试样,焊缝的塑性最差。2%氢环境下母材以及焊缝的氢脆敏感性小于5%氢环境下,在相同含氢环境下焊缝的氢脆敏感性最大,母材周向试样次之,母材轴向试样最小。

    Abstract:

    Slow strain rate tensile tests were carried out on base metal axial and circumferential specimens and weld specimens of X80 pipeline steel in 12 MPa high pressure environment with gas composition (volume fraction) of 2% H2+2% CO2+N2 (2% hydrogen environment), 5% H2+2% CO2+N2 (5% hydrogen environment) and 100% N2 (hydrogen-free environment). The tensile properties of specimens in different environments were studied, and the hydrogen embrittlement sensitivity of base metal and weld was evaluated based on the percentage reduction of area. The results show that compared with those in the hydrogen-fee environment, the percentage elongation after fracture of the base metal axial specimen in 2% hydrogen environment and 5% hydrogen environment decreased by about 1% and 5%, of the base metal circumferential specimen decreased by about 7% and 11%, and of the weld decreased by about 7% and 12%, respectively. The plasticity deterioration degree of the weld was greater than that of the base metal, with a greater degradation in the 5% hydrogen environment. The tensile strengths of base metal and weld in 2% and 5% hydrogen environments were basically similar. In the same hydrogen-containing environment, the tensile strength of the base metal circumferential specimen was higher than that of the axial specimen, and the tensile strength of the weld was the lowest; the plasticity of the base metal axial specimen was better than that of the radial specimen, and the plasticity of the weld was the worst. The hydrogen embrittlement sensitivities of base metal and weld in 2% hydrogen environment were lower than that in 5% hydrogen environment. The hydrogen embrittlement sensitivity of weld was the largest, followed by base metal circumferential specimen and axial specimen in the same hydrogen-containing environment.

  • 氢能作为一种新型能源,具有无污染、能量转化效率高、可再生等诸多优点,被认为是最具潜力的二次能源,因而得到重视[1]。氢气的大范围、长距离运输仍然是一个难题,而在原有已建成天然气管网中混氢运输可以大幅度降低运输成本。目前,我国常用的长距离天然气输送管线由X70、X80钢管焊接而成[2],如果在原有的天然气管网中混入氢气,氢易进入管线钢晶格内部,加剧管线钢力学性能和疲劳性能的劣化[3-4],导致脆性断裂。X70、X80管线钢为高强度管线钢,对氢脆和氢致裂纹扩展更为敏感[5],因此为保证高强度管线钢管网的安全运行,需要进一步研究其在氢环境下的性能变化规律。

    在氢环境中服役时,应力和氢浓度梯度的共同作用会加快氢的扩散与迁移,氢更容易被钢中的氢陷阱吸附,导致裂纹在氢陷阱处萌生,在长时间的应力作用下裂纹不断扩展,最终材料发生脆性断裂[6]。慢应变速率拉伸试验是研究材料应力与应变关系的一种常用试验方法,通过该试验测得的强度损失、断裂应变、面积减少等可以对材料的氢脆敏感性进行定量表征[7]。目前,管线钢的慢应变速率拉伸试验大多在电化学充氢后或在纯氢气环境中进行[8-10],而在高压含其他杂质气体的临氢环境中进行的较少[11-12]。此外,管线钢氢扩散与氢脆敏感性之间的定量关系仍不清楚,这制约了对氢脆机理的进一步认识。为了准确地反映真实氢气环境中管线钢的劣化规律,作者采用与服役管道工况更为接近的高压临氢环境,通过慢应变速率拉伸试验研究了X80管线钢母材轴向和周向试样以及焊缝试样在不同氢含量的高压气体环境中的强度和塑性变化,并评价了管线钢母材和焊缝的氢脆敏感性。

    试验材料为取自现场的包括焊缝的X80管线钢管,管外径为1 219 mm,壁厚为21 mm,管线钢的主要化学成分(质量分数/%)为0.093C,0.250Si,1.500Mn,0.136Cr,0.159Mo,0.518Nb,0.120Cu,0.014Ti,余Fe。按照GB/T 15970.7—2017《金属和合金的腐蚀 应力腐蚀试验 第7部分:慢应变速率试验》,在X80管线钢管母材上沿轴向、周向以及在焊缝区域中沿周向各取3个如图1所示的标准光滑拉伸试样,分别记作母材轴向和周向试样以及焊缝试样。利用自行设计的带有设计压力为30 MPa的气体环境试验箱的Instron 8801型疲劳试验机进行慢应变速率拉伸试验:将拉伸试样放入气体环境试验箱后,对气体环境试验箱进行密封并用真空泵抽真空,随后用氮气反复吹扫3次;在气体环境试验箱中充入目标气体,使用高纯氮气将总压力补至12 MPa,进行慢应变速率拉伸试验,应变速率为1×10−5 s−1,试验温度为(20±5) ℃。目标气体包括氢气和CO2,气体组成(体积分数)分别为2% H2+2% CO2+N2、5% H2+2% CO2+N2以及100% N2,分别记为2%氢环境、5%氢环境、无氢环境。相同环境下测3次取平均值。材料氢脆敏感性用氢脆指数表征,氢脆指数越大,氢脆敏感性越大。氢脆指数计算公式[13-14]如下:

    (1)

    式中:IA为氢脆指数;A0为在无氢环境中的断面收缩率;AH为在氢环境中的断面收缩率。

    图  1  慢应变速率拉伸试样的尺寸
    Figure  1.  Size of slow strain rate tensile specimen

    图2可以看出:在不同环境中慢应变速率拉伸过程中,母材轴向试样均先经过弹性阶段,然后到达屈服点,不同环境下的屈服点几乎相同,之后进入塑性变形阶段;在塑性变形阶段,应力均先缓慢增加,达到峰值应力后逐渐降低,直至试样断裂。不同环境中母材轴向试样的抗拉强度相近,均约为650 MPa,对应真应变为15%左右。可知,在不同含氢环境中母材轴向试样的抗拉强度相似。

    图  2  不同环境下母材轴向试样的真应力-真应变曲线
    Figure  2.  True stress-true strain curves of base metal axial specimen in different environments

    在无氢环境、2%氢环境、5%氢环境下母材轴向试样的断后伸长率分别为25.01%,24.85%,23.77%,断面收缩率分别为63.68%,62.77%,62.45%。可见,随着环境中H2含量的增加,母材轴向试样的塑性降低。在5%氢环境中断后伸长率更小,可能是因为在氢分压更高的环境中CO2对表层氢原子扩散激活能的降低效果更加显著[15]。随着环境中H2含量的升高,母材轴向试样的断面收缩率降低幅度变小。

    图3可以看出:在不同环境中慢应变速率拉伸过程中,母材周向试样均先经过弹性阶段,在到达相同屈服点后进入塑性变形阶段;在塑性变形阶段,应力先缓慢增加,达到峰值后逐渐降低,直至试样断裂。不同环境中母材周向试样的抗拉强度约为670.3 MPa,略高于母材轴向试样,此时对应的真应变为12%左右。在不同含氢环境中母材周向试样的抗拉强度相似。

    图  3  不同环境下母材周向试样的真应力-真应变曲线
    Figure  3.  True stress-true strain curves of base metal circumferential specimen in different environments

    在无氢环境、2%氢环境、5%氢环境下母材周向试样的断后伸长率分别为24.15%,22.48%,21.44%,断面收缩率分别为59.66%,58.04%,54.92%。可见,随着环境中H2含量的增加,母材周向试样的塑性降低。

    由上可得,与无氢环境相比,2%氢环境,5%氢环境下母材轴向试样的断后伸长率分别降低约1%和5%,母材周向试样的断后伸长率分别降低约7%和11%。对比发现,在含氢环境中母材周向的塑性劣化程度更明显。在含氢环境下金属材料的性能劣化程度与进入材料内部的氢含量呈正相关,尤其是当内部存在缺陷或可吸附大量不可扩散氢的氢陷阱时,劣化程度更为显著[16],由此推测母材周向的内部缺陷更多。虽然周向试样按照标准加工制作,但取样位置有可能处于局部塑性缺失机制的影响范围[17],进而导致在含氢环境中相较于轴向试样其性能的劣化程度更高。除此之外,X80钢轴向和周向截面的显微组织均以粒状贝氏体和针状铁素体为主,但轴向晶粒尺寸小于周向晶粒尺寸[18],推测母材周向可能由于较大的晶粒尺寸具有更多的氢捕获位点而引入更多的氢,从而导致周向的性能劣化程度更显著。

    图4可以看出:在不同环境下拉伸过程中,焊缝试样均先经过弹性阶段,达到相同屈服点后进入塑性变形阶段;在塑性变形阶段,真应力先缓慢增加,然后逐渐降低,直至试样断裂。焊缝试样的抗拉强度约为591.3 MPa,低于母材,此时对应的真应变为7%左右。焊缝组织中的针状铁素体以及粗大铁素体的存在导致组织不均匀性增加[18],因此焊缝的抗拉强度低于母材。在不同含氢环境中焊缝试样的抗拉强度相似。

    图  4  不同环境下焊缝试样的真应力-真应变曲线
    Figure  4.  True stress-true strain curves of weld specimen in different environments

    比较母材和焊缝的拉伸真应力-真应变曲线可以发现,母材在真应变接近15%时发生颈缩,而焊缝则在真应变约为10%时发生颈缩,可见焊缝表现出更早屈服的特征。

    在无氢环境、2%氢环境、5%氢环境下焊缝试样的断后伸长率分别为19.10%,18.58%,17.61%,断面收缩率分别为57.23%,50.74%,48.81%。可见,随着环境中H2含量的增加,焊缝的塑性降低。与无氢环境相比,2%氢环境、5%氢环境下焊缝试样的断后伸长率分别降低约7%和12%,降幅高于母材试样,说明焊缝的塑性劣化程度高于母材。这是因为较高的氢分压使得不均匀焊缝组织受氢的影响相较于较低的氢分压明显增加,性能劣化程度进一步增大。

    表1可知,2%氢环境下母材轴向与周向试样以及焊缝试样的氢脆指数均低于5%氢环境下,说明氢气体积分数越大,氢脆敏感性就越大。在相同含氢环境下焊缝的氢脆敏感性最大,母材周向试样次之,母材轴向试样最小。在含氢环境下,实际进入材料内部的氢含量不仅与显微组织有关,还与缺陷、夹杂物等的分布有关[19]。焊缝中由热机械工艺形成的硬化相对氢损伤有着更高的敏感性[20]。不同于母材组织中铁素体和珠光体的均匀分布,焊缝由于组织分布不均匀而存在许多缺陷,大量缺陷的存在使得焊缝在慢应变速率拉伸过程中不可避免地产生应力集中,加剧了高压含氢环境中氢的吸附和聚集[11,21],进入焊缝中的氢含量增加,因此焊缝的力学性能劣化最严重,氢脆敏感性最大。在CO2环境中应力-应变区域会形成微裂纹和腐蚀坑,使材料的延展性降低[22],因此在含氢环境中CO2的存在导致焊缝力学性能劣化程度更大。X80管线钢焊缝是混氢输送管线的薄弱环节,其组织及缺陷调控以及工艺研究是输氢管线材料研究中的重要关注点。

    表  1  不同含氢环境中母材与焊缝的氢脆指数
    Table  1.  Hydrogen embrittlement index of base metal and weld in different hydrogen-containing environments
    材料氢脆指数/%
    2%氢环境5%氢环境
    母材轴向1.371.92
    母材周向2.707.93
    焊缝11.3914.76
    下载: 导出CSV 
    | 显示表格

    (1)在2%和5%氢环境中X80管线钢母材和焊缝的抗拉强度基本相似。与无氢环境相比,2%氢环境、5%氢环境下母材轴向试样的断后伸长率分别降低约1%和5%,母材周向试样分别降低约7%和11%,焊缝分别降低约7%和12%,焊缝的塑性劣化程度大于母材,且5%氢环境中的塑性劣化程度更大。在相同含氢环境中母材周向试样的抗拉强度高于轴向试样,焊缝的抗拉强度最低,母材轴向试样的塑性最好,母材周向试样次之,焊缝最差。

    (2)2%氢环境下母材轴向与周向试样以及焊缝试样的氢脆敏感性小于5%氢环境下,在相同含氢环境下焊缝的氢脆敏感性最大,母材周向试样次之,母材轴向试样最小。

  • 图  1   慢应变速率拉伸试样的尺寸

    Figure  1.   Size of slow strain rate tensile specimen

    图  2   不同环境下母材轴向试样的真应力-真应变曲线

    Figure  2.   True stress-true strain curves of base metal axial specimen in different environments

    图  3   不同环境下母材周向试样的真应力-真应变曲线

    Figure  3.   True stress-true strain curves of base metal circumferential specimen in different environments

    图  4   不同环境下焊缝试样的真应力-真应变曲线

    Figure  4.   True stress-true strain curves of weld specimen in different environments

    表  1   不同含氢环境中母材与焊缝的氢脆指数

    Table  1   Hydrogen embrittlement index of base metal and weld in different hydrogen-containing environments

    材料氢脆指数/%
    2%氢环境5%氢环境
    母材轴向1.371.92
    母材周向2.707.93
    焊缝11.3914.76
    下载: 导出CSV
  • [1] XING X ,CHENG R ,CUI G ,et al. Quantification of the temperature threshold of hydrogen embrittlement in X90 pipeline steel[J]. Materials Science and Engineering:A,2021,800:140118.
    [2] 原佳强,王莉萍. 不同电化学充氢状态下X70和X80管线钢的断裂特性[J]. 金属热处理,2015,40(12):56-58.

    YUAN J Q ,WANG L P. Fracture characteristics of X70 and X80 pipeline steels under different electrochemical hydrogen charging state[J]. Heat Treatment of Metals,2015,40(12):56-58.

    [3] TAKAKUWA O ,OGAWA Y ,OKAZAKI S ,et al. A mechanism behind hydrogen-assisted fatigue crack growth in ferrite-pearlite steel focusing on its behavior in gaseous environment at elevated temperature[J]. Corrosion Science,2020,168:108558.
    [4] DAS B ,SINGH A. Influence of hydrogen on the low cycle fatigue performance of P91 steel[J]. International Journal of Hydrogen Energy,2020,45(11):7151-7168.
    [5] 褚武扬. 氢脆和应力腐蚀-典型体系[M]. 北京:科学出版社,2013.

    CHU W Y. Hydrogen embrittlement and stress corrosion-typical system[M]. Beijing:Science Press,2013.

    [6] 范裕文,吴明,陈旭,等. 管线钢氢致开裂研究现状[J]. 热加工工艺,2017,46(4):48-53.

    FAN Y W ,WU M ,CHEN X ,et al. Research progress of hydrogen-induced cracking for pipeline steel[J]. Hot Working Technology,2017,46(4):48-53.

    [7] ASANUMA Y ,MORI Y ,MATSUNAGA H ,et al. Behavior of initiation and growth of micro-cracks in SSRT test of austenitic stainless steel in high-pressure hydrogen gas[J]. The Proceedings of Mechanical Engineering Congress,Japan,2016,2016:S0310303.
    [8] 刘玉,李焰,李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J]. 金属学报,2013,49(9):1089-1097.

    LIU Y ,LI Y ,LI Q. Effect of cathodic polarization on hydrogen embrittlement susceptibility of X80 pipeline steel in simulated deep sea environment[J]. Acta Metallurgica Sinica,2013,49(9):1089-1097.

    [9] GADALA I M ,ALFANTAZI A. Low alloy X100 pipeline steel corrosion and passivation behavior in bicarbonate-based solutions of pH 6.7 to 8.9 with groundwater anions:An electrochemical study[J]. Metallurgical and Materials Transactions A,2015,46(7):3104-3116.
    [10] ZHOU C S ,YE B G ,SONG Y Y ,et al. Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel[J]. International Journal of Hydrogen Energy,2019,44(40):22547-22558.
    [11] 李守英,胡瑞松,赵卫民,等. 氢在钢铁表面吸附以及扩散的研究现状[J]. 表面技术,2020,49(8):15-21.

    LI S Y ,HU R S ,ZHAO W M ,et al. Hydrogen adsorption and diffusion on steel surface[J]. Surface Technology,2020,49(8):15-21.

    [12] POUND B G. The application of a diffusion/trapping model for hydrogen ingress in high-strength alloys[J]. Corrosion,1989,45(1):18-25.
    [13] MORO I ,BRIOTTET L ,LEMOINE P ,et al. Hydrogen embrittlement susceptibility of a high strength steel X80[J]. Materials Science and Engineering:A,2010,527(27/28):7252-7260.
    [14] TAKASAWA K ,IKEDA R ,ISHIKAWA N ,et al. Effects of grain size and dislocation density on the susceptibility to high-pressure hydrogen environment embrittlement of high-strength low-alloy steels[J]. International Journal of Hydrogen Energy,2012,37(3):2669-2675.
    [15] ZHOU C S ,HE Y M ,JIANG J H ,et al. Hydrogen uptake induced by CO2 enhances hydrogen embrittlement of iron in hydrogen blended natural gas[J]. Corrosion Science,2022,207:110594.
    [16] ZHU W H ,SUN D X ,XIE F ,et al. Effects of corrosion defect growth on submarine pipeline under operating pressure and axial displacement[J]. Ocean Engineering,2023,267:113297.
    [17] SAKONDER C ,XUE L ,PAREDES M ,et al. Directional dependence of critical axial strain in X65 pipeline steel subject to combined internal pressure and bending loading[J]. International Journal of Pressure Vessels and Piping,2022,196:104610.
    [18] 张海,李少坡,丁文华,等. 显微组织与晶体学织构对X80管线钢拉伸强度各向异性的影响[J]. 金属热处理,2018,43(2):68-71.

    ZHANG H ,LI S P ,DING W H ,et al. Effects of microstructure and crystallographic texture on anisotropy of tensile strength of X80 pipeline steel[J]. Heat Treatment of Metals,2018,43(2):68-71.

    [19] ZHANG D ,ZHU H H ,ZHANG C ,et al. Crack initiation and propagation of defects adjacent to the X65 pipeline spiral weld under axial tensile force[J]. International Journal of Pressure Vessels and Piping,2022,200:104814.
    [20] 孙颖昊,程玉峰. 高强管线钢焊缝区氢损伤研究与展望[J]. 石油管材与仪器,2021,7(6):1-13.

    SUN Y H ,CHENG Y F. A review on hydrogen damage at welds of high-strength steel pipelines[J]. Petroleum Tubular Goods & Instruments,2021,7(6):1-13.

    [21] CHENG Y F. Stress corrosion cracking of pipelines[M]. Hoboken,New Jersey,USA:Wiley,2013.
    [22] MAJCHROWICZ K ,BRYNK T ,WIECZOREK M ,et al. Exploring the susceptibility of P110 pipeline steel to stress corrosion cracking in CO2-rich environments[J]. Engineering Failure Analysis,2019,104:471-479.
图(4)  /  表(1)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  2
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 修回日期:  2024-07-31
  • 刊出日期:  2025-03-19

目录

/

返回文章
返回