• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

焊接速度对铝合金/铜激光熔钎焊接头组织及性能的影响

周海波, 蒋翔, 周宇浩

周海波, 蒋翔, 周宇浩. 焊接速度对铝合金/铜激光熔钎焊接头组织及性能的影响[J]. 机械工程材料, 2024, 48(10): 85-91. DOI: 10.11973/jxgccl230493
引用本文: 周海波, 蒋翔, 周宇浩. 焊接速度对铝合金/铜激光熔钎焊接头组织及性能的影响[J]. 机械工程材料, 2024, 48(10): 85-91. DOI: 10.11973/jxgccl230493
ZHOU Haibo, JIANG Xiang, ZHOU Yuhao. Effect of Welding Speed on Microstructure and Properties of Aluminum Alloy/Copper Laser Welding-Brazing Joints[J]. Materials and Mechanical Engineering, 2024, 48(10): 85-91. DOI: 10.11973/jxgccl230493
Citation: ZHOU Haibo, JIANG Xiang, ZHOU Yuhao. Effect of Welding Speed on Microstructure and Properties of Aluminum Alloy/Copper Laser Welding-Brazing Joints[J]. Materials and Mechanical Engineering, 2024, 48(10): 85-91. DOI: 10.11973/jxgccl230493

焊接速度对铝合金/铜激光熔钎焊接头组织及性能的影响

基金项目: 

南通市科技项目 JC12022094

详细信息
    作者简介:

    周海波(1984—),女,江苏海安人,讲师,硕士

  • 中图分类号: TG456.7

Effect of Welding Speed on Microstructure and Properties of Aluminum Alloy/Copper Laser Welding-Brazing Joints

  • 摘要:

    采用激光熔钎焊在不同焊接速度(4,5,6,7,8 mm·s−1)下对5052铝合金和T2铜进行对接焊,研究了焊接速度对接头宏观形貌、显微组织、显微硬度、抗拉强度及拉伸断裂机理的影响。结果表明:随着焊接速度增加,激光熔钎焊接头的焊缝成形先变优后变差,当焊接速度为6 mm·s−1时焊缝成形最佳;随着焊接速度增加,接头中树枝状Al-Cu共晶组织变少,Zn-Al共晶组织变多,当焊接速度为6 mm·s−1时接头铜侧界面反应区出现Al4Cu9和Al2Cu金属间化合物,熔焊区由α-Al固溶体、η-Zn固溶体、Al-Cu共晶组织和Zn-Al共晶组织组成;随着焊接速度增加,铝合金/铜激光熔钎焊接头熔焊区硬度变化不大,铜侧界面反应区硬度下降,接头抗拉强度先增大后减小,拉伸断裂模式按照解理断裂、准解理断裂、韧性断裂、准解理断裂顺序依次变化,当焊接速度为6 mm·s−1时抗拉强度(212 MPa)最大,接头发生韧性断裂。

    Abstract:

    The 5052 aluminum alloy and T2 copper were butt welded by laser welding-brazing at different welding speeds (4, 5, 6, 7, 8 mm · s−1). The effect of welding speed on the macromorphology, microstructure, microhardness, tensile strength and tensile fracture mechanism of the joint was studied. The results show that with the increase of welding speed, the weld forming quality of laser welding-brazing joint first became better and then worse, and the weld forming quality was the best when the welding speed was 6 mm · s−1. With the increase of welding speed, the dendritic Al-Cu eutectic structure decreased and the Zn-Al eutectic structure increased. When the welding speed was 6 mm · s−1, Al4Cu9 and Al2Cu intermetallic compounds were formed in the copper side interface reaction zone of the joint, and the fusion welding zone consisted of α-Al solid solution, η-Zn solid solution, Al-Cu eutectic structure and Zn-Al eutectic structure. With the increase of welding speed, the hardness of fusion welding zone of the aluminum alloy/copper laser welding-brazing joint had little change, the hardness of copper side interface reaction zone gradually decreased, the tensile strength of the joint increased first and then decreased, and the tensile fracture mode changed from the cleavage fracture, quasi-cleavage fracture, ductile fracture to quasi-cleavage fracture in sequence. When the welding speed was 6 mm · s−1, the tensile strength of the joint was the largest (212 MPa) and the fracture mode was ductile fracture.

  • 机械振动及噪声会带来机械结构损坏、寿命缩短、加工精度降低以及生活工作环境变差等问题,甚至会对人体造成伤害[1]。阻尼材料可以将机械振动能转化为热能耗散,有效降低机械振动及噪声[2]。在金属阻尼材料中,Fe-Mn合金由于制造成本低、阻尼性能和力学性能较好等优势,近年来受到越来越广泛的关注[3]

    Fe-Mn合金的阻尼源包括ε马氏体中层错界面、ε马氏体变体界面、ε马氏体/γ奥氏体界面、γ奥氏体中层错界面,其阻尼效果通过上述4种界面的相对滑动,即内摩擦使机械振动能转化成热能而实现[4]。现有研究表明,合金中的元素种类及含量[58]、热处理工艺参数(热处理温度[9]、保温时间[10])、冷变形[8,11-13]等均会对Fe-Mn合金的4种界面产生影响,从而影响其阻尼性能。对于冷变形,WANG等[11]研究发现,冷变形量低于10%时,随着冷变形量的增大Fe-17Mn合金的阻尼性能表现出先提升后下降的趋势。HUANG等[12]研究认为:较小的冷变形量使Fe-19.35Mn合金的层错几率增加,从而提升其阻尼性能;较大的冷变形量使合金中ε马氏体和层错相互交割,增加了不全位错运动(脱钉)的难度,从而降低了合金的阻尼性能。但在冷变形过程中,金属材料可能会出现硬化和脆化等现象。相比之下,对材料进行热变形处理可以改善塑性,释放应力,提高力学性能。但有关热变形对合金显微组织和阻尼性能的影响却鲜有报道。

    为此,作者对退火态Fe-18Mn合金进行不同变形量的热轧,研究了热轧变形量对显微组织和阻尼性能的影响,以期为Fe-Mn弹性阻尼合金加工工艺的制订和优化提供参考。

    试验材料为Fe-18Mn合金,主要化学成分(质量分数/%)为18.21Mn,0.002C,余Fe。合金采用真空感应炉熔炼,在1 150 ℃下热锻成截面尺寸为40 mm×40 mm的长棒。对长棒进行900 ℃×4 h的退火处理,炉冷,再在二辊轧机中进行热轧,轧制前在900 ℃保温20 min,热轧变形量分别为5%,11%,16%和22%。

    采用Bruker D8 ADVANCE型X射线衍射仪(XRD)分析物相组成,铜靶,Kα射线,工作电压为40 kV,电流为40 mA,扫描步长为0.03°,扫描范围在40°~100°;采用Rietveld精修法分析相含量,分析软件为MAUD。采用Tescan Mira 3 XH型扫描电子显微镜(SEM)观察显微组织,采用电子通道衬度成像(ECCI)和电子背散射衍射(EBSD)模式分析晶界取向,观察面平行于轧制方向(RD),垂直于横向方向(TD),EBSD扫描步长为0.2 μm,扫描范围为100 μm×80 μm,数据分析处理软件为AZtecCrystal。试样经机械研磨、粒径1 μm金刚石悬浮液抛光、粒径0.03 μm二氧化硅悬浮液抛光后,采用JEOL JEM-2100F型透射电子显微镜(TEM)对ε马氏体中的缺陷进行精细观察。制取尺寸为35.0 mm×8.0 mm×0.7 mm的试样,采用TA Q850型动态热机械分析仪测试热轧后试验合金的阻尼因子,采用振幅扫描,应变幅在0.01%~0.10%,测试频率为1 Hz,测试温度为室温,试样长度方向与轧制方向保持一致,试样厚度方向与法向方向(ND)保持一致。

    图1可见:不同变形量热轧前后试验合金均主要由ε马氏体、α´马氏体和奥氏体组成;热轧前退火态(热轧变形量为0)试验钢中,ε马氏体、α´马氏体和奥氏体的体积分数分别为82.9%,7.2%,9.9%;热轧后当变形量增加至5%时,ε马氏体体积分数增加至约93.6%,奥氏体体积分数减小至约2.3%,α´马氏体体积分数未发生明显变化;随热轧变形量继续增加,三相含量均未发生明显变化,当热轧变形量为22%时,ε马氏体、α´马氏体和奥氏体的体积分数分别为93.9%,5.0%,1.1%。

    图  1  不同变形量热轧前后试验合金的XRD谱及各相含量与热轧变形量的关系
    Figure  1.  XRD spectra of test alloy before and after hot rolling with different deformations (a) and relationship between each phase content and hot rolling deformation (b)

    图2可见:退火态及5%变形量热轧后试验合金均主要由片层状ε马氏体构成,变形量为5%热轧后还出现了局部全位错滑移特征(箭头所示);随热轧变形量增加,显微组织表现出细化趋势,变形量为22%时合金中局部出现类胞状结构(箭头所示)。

    图  2  退火态和不同变形量热轧后试验合金的显微组织
    Figure  2.  Microstructures of test alloy annealed (a) and after hot rolling with different deformations (b–e)

    图3可见:退火态试验合金主要由ε马氏体构成,其间分布着相当数量的片层状奥氏体;变形量为5%,22%热轧后试验合金中奥氏体含量显著降低,且分布着宽度为30~40 μm的长条型α´马氏体区域,相比之下,变形量为22%时的α´马氏体更加细小。统计可得,5%变形量热轧后ε马氏体晶粒尺寸约为3.3 μm,接近于未热轧退火态(3.5 μm),变形量为22%时ε马氏体平均晶粒尺寸减小至约2.5 μm。细小多变体ε马氏体和α´马氏体的形成是热轧细化显微组织的主要原因。

    图  3  退火态和不同变形量热轧后试验合金的取向分布
    Figure  3.  Orientation distribution of test alloy annealed (a–b) and after hot rolling with different deformations (c–f): (a, c, e) inverse pole figure and (b, d, f) phase diagram

    图4可见:未热轧退火态试验合金的局部应变主要集中在ε马氏体变体界面附近,奥氏体/ε马氏体界面处无明显的应变集中,内核平均取向差(KAM)约为0.92°;热轧后当变形量为5%时,局部应变仍然主要集中于ε马氏体变体界面附近,但相比于热轧前显著降低,KAM约为0.55°;当热轧变形量为22%时,局部应变分布在ε马氏体变体界面和ε马氏体内部,且高于热轧前,KAM约为1.34°。

    图  4  退火态和不同变形量热轧后试验合金的局部应变分布和KAM分布
    Figure  4.  Local strain distribution (a–c) and KAM distribution (d) of test alloy annealed (a) and after hot rolling with different deformations (b–d)

    对于ε马氏体,母相重构采用S-N关系,即{111}γ//{0001}ε和{−101}γ//{11-20}ε;对于α´马氏体,母相重构采用K-S关系,即{111}γ//{011}α´和{−101}γ//{−1-11}α´。由图5可见:重构后,5%变形量热轧前后合金的微观结构较为接近,主要为较粗的奥氏体晶粒和奥氏体孪晶,当变形量增至22%时出现较多的细小奥氏体晶粒。

    图  5  退火态和不同变形量热轧后试验合金的奥氏体母相重构图
    Figure  5.  Austenitic parent phase reconstruction map of test alloy annealed (a–b) and after hot rolling of different deformations (c–f): (a, c, e) inverse pole figure and (b, d, f) phase diagram

    图6可见:当热轧变形量为5%时,ε马氏体中存在大量的位错和层错,在部分位错密集的ε马氏体中出现位错缠结,而层错分布较少,在层错密集的ε马氏体中位错分布较少;奥氏体内部主要以层错为主。

    图  6  5%变形量热轧后试验合金的TEM形貌
    Figure  6.  TEM morphology of test alloy after hot rolling with deformation of 5%: (a) large visual field; (b) partial enlarged view; (c) austenite bright field image; (d) austenite dark field image; (e) ε martensite bright field image and (f) ε martensite dark field image

    图7可见:退火态和不同变形量热轧后试验合金的阻尼因子均随应变幅增加先显著增大,当应变幅大于0.04%时增大速率放缓,振幅效应明显减弱;随热轧变形量增加,阻尼因子呈下降趋势,且下降速率随应变幅增加而增大。

    图  7  退火态和不同变形量热轧后试验合金的阻尼因子随应变幅的变化曲线
    Figure  7.  Variation curve of damping factors vs strain amplitude of test alloy annealed and after hot rolling with different deformations

    相比热轧前,5%变形量下热轧后ε马氏体晶粒尺寸减小,含量增加,这使得ε马氏体变体界面增加,而22%变形量热轧后试验合金在冷却过程中(马氏体转变起始温度以上)发生奥氏体再结晶,使得相变后的ε马氏体显著细化,从而进一步增加了ε马氏体变体界面。同时,热轧会促进奥氏体向ε马氏体转变,使残余奥氏体含量降低,ε马氏体/γ奥氏体界面显著减少。此外,退火态试验钢的ε马氏体中包含有大量层错且位错密度较低,进行热轧时ε马氏体中的位错增加,但层错受到抑制,增加热轧变形量则会进一步提高位错密度(表现为位错胞的出现)。ε马氏体中层错界面对阻尼性能的贡献大于ε马氏体变体界面。对于α´马氏体含量,因其在退火和热轧过程中均未发生变化,故不作为阻尼性能的影响因素。总的来说,5%变形量热轧后,ε马氏体层错、奥氏体层错和ε马氏体/γ奥氏体界面的贡献降低是阻尼性能相比于退火态降低的主要原因;当热轧变形量从5%增加至22%后,ε马氏体中层错的贡献降低是阻尼性能进一步降低的原因之一。

    (1)热轧前后Fe-18Mn合金均主要由ε马氏体、α'马氏体和奥氏体组成,但热轧后更多奥氏体向ε马氏体转变,使得奥氏体含量减小,ε马氏体含量增加,且三相含量随变形量增加未发生明显变化。

    (2)随着热轧变形量增加,Fe-18Mn合金阻尼性能降低。5%变形量热轧后,ε马氏体层错、奥氏体层错和ε马氏体/γ奥氏体界面的贡献降低是阻尼性能相比于热轧前降低的主要原因;当热轧变形量从5%增加至22%后,ε马氏体中层错的贡献降低是阻尼性能进一步降低的原因之一。

  • 图  1   5052铝合金/T2铜激光熔钎焊示意

    Figure  1.   Schematic of 5052 aluminum alloy/T2 copper laser welding-brazing

    图  2   不同焊接速度下5052铝合/T2铜激光熔钎焊接头的宏观形貌

    Figure  2.   Macromorphology of 5052 aluminum alloy/T2 copper laser welding-brazing joints under different welding speeds:(a, d, g, j, m) front face; (b, e, h, k, n) back face and (c, f, i, l, o) cross section

    图  3   焊接速度为6 mm·s−1时5052铝合金/T2铜激光熔钎焊接头的截面微观形貌

    Figure  3.   Cross-section micromorphology of 5052 aluminum alloy/T2 copper laser welding-brazing joint at welding speed of 6 mm·s−1: (a) overall and (b) enlarged area A

    图  4   焊接速度为6 mm·s−1时5052铝合金/T2铜激光熔钎焊接头铜侧和铝合金侧界面的XRD谱

    Figure  4.   XRD patterns of interfaces on copper (a) and aluminum alloy (b) sides of 5052 aluminum alloy/T2 copper laser welding-brazing joint at welding speed of 6 mm·s−1

    图  5   不同焊接速度下5052铝合金/T2铜激光熔钎焊接头的微观形貌

    Figure  5.   Microstructure of 5052 aluminum alloy/T2 copper laser welding-brazing joint at different welding speeds

    图  6   不同焊接速度下5052铝合金/T2铜激光熔钎焊接头横截面的显微硬度分布

    Figure  6.   Microhardness distribution on cross section of 5052 aluminum alloy/T2 copper laser welding-brazing joint at different welding speeds

    图  7   不同焊接速度下5052铝合金/T2铜激光熔钎焊接头拉伸断裂位置

    Figure  7.   Tensile fracture location of 5052 aluminum alloy/T2 copper laser laser welding-brazing joint at different welding speeds

    图  8   不同焊接速度下5052铝合金/T2铜激光熔钎焊接头的拉伸断口微观形貌

    Figure  8.   Tensile fracture morphology of 5052 aluminum alloy/T2 copper laser welding-brazing joint at different welding speeds

    表  1   母材的力学性能

    Table  1   Mechanical properties of base metals

    材料抗拉强度/MPa断后伸长率/%显微硬度/HV
    5052铝合金210~23012~2053
    T2铜2703594
    下载: 导出CSV

    表  2   母材和焊丝的化学成分

    Table  2   Chemical composition of base metals and welding materials

    材料质量分数/%
    5052铝合金2.480.17≤0.5
    T2铜≥ 99.900.0050.0050.04
    XR–FC22S药芯焊丝14.850.100.250.5
    下载: 导出CSV

    Table  3   EDS scanning results at different positions in Fig. 3(b)

    区域测点原子分数/%
    AlCuZn
    铜侧界面反应区B25.6266.517.87
    C66.5221.8311.65
    熔焊区D96.891.961.15
    E1.911.7896.31
    F66.3523.2410.41
    G36.921.7661.32
    下载: 导出CSV
  • [1] SODA H ,MCLEAN A ,WANG Z ,et al. Pilot-scale casting of single-crystal copper wires by the Ohno continuous casting process[J]. Journal of Materials Science,1995,30(21):5438-5448.
    [2] WANG Y H ,XIAO L R ,ZHAO X J ,et al. Microstructure and mechanical properties of columnar-grained copper produced by the Ohno continuous casting technique[J]. Materials Science and Engineering:A,2015,639:122-130.
    [3] ZOERAM A S ,MOUSAVI ANIJDAN S H ,JAFARIAN H R ,et al. Welding parameters analysis and microstructural evolution of dissimilar joints in Al/bronze processed by friction stir welding and their effect on engineering tensile behavior[J]. Materials Science and Engineering:A,2017,687:288-297.
    [4] YAN S H ,SHI Y. Influence of Ni interlayer on microstructure and mechanical properties of laser welded joint of Al/Cu bimetal[J]. Journal of Manufacturing Processes,2020,59:343-354.
    [5] MARTINSEN K ,HU S J ,CARLSON B E. Joining of dissimilar materials[J]. CIRP Annals,2015,64(2):679-699.
    [6] ZHOU X L ,ZHANG G ,SHI Y ,et al. Microstructures and mechanical behavior of aluminum-copper lap joints[J]. Materials Science and Engineering:A,2017,705:105-113.
    [7] EISAZADEH H ,AIDUN D K. Investigation of transient/residual strain and stress in dissimilar weld[J]. Journal of Manufacturing Processes,2017,26:372-381.
    [8] MA B ,GAO X D ,HUANG Y J ,et al. A review of laser welding for aluminium and copper dissimilar metals[J]. Optics and Laser Technology,2023,167:109721.
    [9] 彭迟,程东海,陈益平,等. 铝/铜异种材料等离子弧熔钎焊搭接接头工艺分析[J]. 焊接学报,2016,37(4):65-68.

    PENG C ,CHENG D H ,CHEN Y P ,et al. Analysis process of plasma arc melting brazing lap joint of dissimilar materials of aluminum and copper[J]. Transactions of The China Welding Institution,2016,37(4):65-68.

    [10] 石玗,周相龙,朱明,等. 铝/铜异种金属脉冲旁路耦合电弧MIG熔钎焊接头的组织与力学性能[J]. 中国有色金属学报,2017,27(9):1816-1822.

    SHI Y ,ZHOU X L ,ZHU M ,et al. Microstructure and mechanical properties of Al/Cu dissimilar metals pulsed DE-MIG welding-brazing joint[J]. The Chinese Journal of Nonferrous Metals,2017,27(9):1816-1822.

    [11] 周利,李志勇,赵洪运,等. 铝/黄铜异种金属TIG熔钎焊接头显微组织与力学性能[J]. 中国有色金属学报,2015,25(9):2389-2395.

    ZHOU L ,LI Z Y ,ZHAO H Y ,et al. Microstructure and mechanical properties of Al/brass dissimilar metals TIG welding-brazing joint[J]. The Chinese Journal of Nonferrous Metals,2015,25(9):2389-2395.

    [12] MASOUDI NEJAD R ,HOSEINI SHOJAATI Z S ,WHEATLEY G ,et al. On the bending angle of aluminum-copper two-layer sheets in laser forming process[J]. Optics and Laser Technology,2021,142:107233.
    [13] YAN S ,LI Z Y ,SONG L L ,et al. Research and development status of laser micro-welding of aluminum-copper dissimilar metals:A review[J]. Optics and Lasers in Engineering,2023,161:107312.
    [14] 李岩,樊丁,黄健康,等. 铝/铜异种金属熔钎焊工艺及界面调控方式的研究现状[J]. 焊接,2022(4):1-8.

    LI Y ,FAN D ,HUANG J K ,et al. Research status on fusion brazing process and interface control mode of Al/Cu dissimilar metal[J]. Welding and Joining,2022(4):1-8.

    [15] DIMATTEO V ,ASCARI A ,FORTUNATO A. Continuous laser welding with spatial beam oscillation of dissimilar thin sheet materials(Al-Cu and Cu-Al):Process optimization and characterization[J]. Journal of Manufacturing Processes,2019,44:158-165.
    [16] YAN S H ,SHI Y. Influence of laser power on microstructure and mechanical property of laser-welded Al/Cu dissimilar lap joints[J]. Journal of Manufacturing Processes,2019,45:312-321.
    [17] MA H ,QIN G L ,GENG P H ,et al. Effect of intermetallic compounds on the mechanical property and corrosion behaviour of aluminium alloy/steel hybrid fusion-brazed welded structure[J]. Journal of Manufacturing Processes,2022,75:170-180.
图(8)  /  表(3)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  2
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-16
  • 修回日期:  2024-09-25
  • 刊出日期:  2024-10-19

目录

/

返回文章
返回