• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

退火温度对淬火配分后热轧高强钢显微组织和力学性能的影响

于永梅, 李治国, 娄国栋, 王源, 郭家鹏, 颜欣然

于永梅, 李治国, 娄国栋, 王源, 郭家鹏, 颜欣然. 退火温度对淬火配分后热轧高强钢显微组织和力学性能的影响[J]. 机械工程材料, 2024, 48(10): 21-27. DOI: 10.11973/jxgccl230515
引用本文: 于永梅, 李治国, 娄国栋, 王源, 郭家鹏, 颜欣然. 退火温度对淬火配分后热轧高强钢显微组织和力学性能的影响[J]. 机械工程材料, 2024, 48(10): 21-27. DOI: 10.11973/jxgccl230515
YU Yongmei, LI Zhiguo, LOU Guodong, WANG Yuan, GUO Jiapeng, YAN Xinran. Effect of Annealing Temperature on Microstructure and Mechanical Properties of Hot Rolled High Strength Steel After Quenching-Partitioning[J]. Materials and Mechanical Engineering, 2024, 48(10): 21-27. DOI: 10.11973/jxgccl230515
Citation: YU Yongmei, LI Zhiguo, LOU Guodong, WANG Yuan, GUO Jiapeng, YAN Xinran. Effect of Annealing Temperature on Microstructure and Mechanical Properties of Hot Rolled High Strength Steel After Quenching-Partitioning[J]. Materials and Mechanical Engineering, 2024, 48(10): 21-27. DOI: 10.11973/jxgccl230515

退火温度对淬火配分后热轧高强钢显微组织和力学性能的影响

基金项目: 

国家自然科学基金面上资助项目 51974085

详细信息
    作者简介:

    于永梅(1974—),女,吉林通化人,副教授,博士

  • 中图分类号: TG161

Effect of Annealing Temperature on Microstructure and Mechanical Properties of Hot Rolled High Strength Steel After Quenching-Partitioning

  • 摘要:

    将热轧高强钢升温至不同温度(780,810,840,870 ℃)保温退火600 s后进行200 ℃×60 s淬火+410 ℃×300 s配分处理,研究了退火温度对其显微组织和力学性能的影响。结果表明:随着退火温度升高,淬火配分后试验钢中铁素体和马奥岛含量减少,回火马氏体、残余奥氏体和贝氏体含量增加;随着退火温度升高,抗拉强度先减小后增大,屈服强度、断后伸长率、屈强比和冲击吸收功均先增大后减小;840 ℃退火温度下淬火配分后试验钢的强度、塑性和韧性匹配优异,抗拉强度(830 MPa)较大,屈服强度(585 MPa)、断后伸长率(39.6%)、屈强比(0.70)和冲击吸收功(−20,−40 ℃环境下分别为28.35,27.69 kJ)最大。

    Abstract:

    The hot rolled high strength steel was heated to different temperatures (780, 810, 840, 870 ℃) and kept warm for 600 s to anneal, and then was subjected to 200 ℃×60 s quenching+410 ℃×300 s partitioning heat treatment. The effects of annealing temperature on microstructure and mechanical properties were studied. The results show that with the increase of annealing temperature, the content of ferrite and martensite-autensite island in test steel after quenching-partitioning decreased, while the content of tempered martensite, residual austenite and bainite increased. With the increase of annealing temperature, the tensile strength decreased first and then increased, and the yield strength, percentage elongation after fracture, ratio of yield to strength and impact absorption work increased first and then decreased. The strength, plasticity and toughness of the test steel after quenching-partitioning at annealing temperature of 840 ℃ were well matched, the tensile strength (830 MPa) was large, the yield strength (585 MPa), the percentage elongation after fracture (39.6%), the ratio of yield to strength (0.70) and the impact absorption work reached the maxium values (28.35, 27.69 kJ, respectively, at −20,−40 ℃).

  • 图  1   热轧态试验钢显微组织

    Figure  1.   Microstructure of hot rolled test steel

    图  2   拉伸试样尺寸

    Figure  2.   Size of tensile sample

    图  3   不同退火温度下淬火配分后试验钢的显微组织

    Figure  3.   Microstructure of test steel after quenching-partitioning at different annealing temperatures

    图  4   不同退火温度下淬火配分后试验钢的XRD谱

    Figure  4.   XRD pattern of test steel after quenching-partitioning at different annealing temperatures

    图  5   870 ℃退火温度下淬火配分后试验钢的SEM形貌和EDS面扫描结果

    Figure  5.   SEM morphology (a) and EDS surface scanning results (b–d) of test steel after quenching-partitioning at annealing temperature of 870 ℃: (b) C; (c) Mn and (d) Si

    图  6   不同退火温度下淬火配分后试验钢的工程应力-工程应变曲线

    Figure  6.   Engineering stress-engineering strain curves of test steel after quenching-partitioning at different annealing temperatures

    图  7   不同退火温度下淬火配分后拉伸断口中心纤维区微观形貌

    Figure  7.   Micromorphology of core fiber region on tensile fracture after quenching-partitioning at different annealing temperatures

    图  8   不同退火温度下淬火配分后试验钢的冲击吸收功

    Figure  8.   Impact absorption work of test steel after quenching-partitioning at different annealing temperatures

    表  1   不同退火温度下淬火配分后试验钢的拉伸性能

    Table  1   Tensile properties of test steel after quenching-partitioning at different annealing temperatures

    退火温度/℃屈服强度/MPa抗拉强度/MPa断后伸长率/%屈强比强塑积/(MPa·%)
    78054086533.20.6228 718
    81058586037.00.6831 820
    84058583039.60.7032 868
    87058083539.30.6932 815
    下载: 导出CSV
  • [1] 王晓娟. 中国新能源汽车的发展现状及未来展望[J]. 时代汽车,2022(4):107-108.

    WANG X J. Development status and future prospets of new energy vehiles in China[J]. Times Automobile,2022(4):107-108.

    [2] 司志旺,符寒光. 合金钢淬火-配分工艺研究进展[J]. 钢铁,2022,57(6):120-131.

    SI Z W ,FU H G. Research progress of quenching and partitioning process for alloy steel[J]. Iron and Steel,2022,57(6):120-131.

    [3] 陈银莉,蒯振,赵爱民,等. 退火及配分温度对Si-Mn系Q&P钢组织和性能的影响[J]. 材料热处理学报,2013,34(9):74-79.

    CHEN Y L ,KUAI Z ,ZHAO A M ,et al. Effect of two-phase region annealing temperature and partitioning temperature on microstructure and properties of a low carbon Si-Mn Q & P steel[J]. Transactions of Materials and Heat Treatment,2013,34(9):74-79.

    [4] 陈连生,张家豪,刘麟,等. 连续退火均热时间对Q&P钢Mn元素分布及加工硬化的影响[J]. 材料热处理学报,2022,43(11):111-120.

    CHEN L S ,ZHANG J H ,LIU L ,et al. Effect of continual annealing soaking time on Mn element distribution and work hardening of Q & P steel[J]. Transactions of Materials and Heat Treatment,2022,43(11):111-120.

    [5] 李辉,陈家泳,段晓鸽,等. 中锰Q&P钢残余奥氏体的稳定性及其TRIP效应[J]. 材料导报,2018,32(4):611-615.

    LI H ,CHEN J Y ,DUAN X G ,et al. Stability and TRIP effect of retained austenite of medium manganese Q & P steel[J]. Materials Reports,2018,32(4):611-615.

    [6] KOYAMA M ,LEE T ,LEE C S ,et al. Grain refinement effect on cryogenic tensile ductility in a Fe–Mn–C twinning-induced plasticity steel[J]. Materials and Design,2013,49:234-241.
    [7] 王俊峰,何煜天. DH780钢的热变形行为及热加工图[J]. 金属热处理,2020,45(6):114-119.

    WANG J F ,HE Y T. Hot deformation behavior and hot processing map of DH780 steel[J]. Heat Treatment of Metals,2020,45(6):114-119.

    [8] 王保磊,王俊峰,王华,等. 退火工艺对新型DH钢显微组织和力学性能的影响[J]. 上海金属,2022,44(6):48-54.

    WANG B L ,WANG J F ,WANG H ,et al. Effect of annealing process on microstructure and mechanical properties of a new type of DH steel[J]. Shanghai Metals,2022,44(6):48-54.

    [9] 肖康汽车用异种高强钢CR22MnB5/DH1050焊接及组织性能研究济南山东建筑大学2022肖康. 汽车用异种高强钢CR22MnB5/DH1050焊接及组织性能研究[D]. 济南:山东建筑大学,2022.

    XIAO KStudy on welding and microstructure properties of dissimilar high strength steel CR22MnB5/DH1050 for automobileJinanShandong Jianzhu University2022XIAO K. Study on welding and microstructure properties of dissimilar high strength steel CR22MnB5/DH1050 for automobile[D]. Jinan:Shandong Jianzhu University,2022.

    [10] 杜鹏举,吴迪. 中锰钢中原奥氏体晶粒尺寸对马氏体相变的影响[J]. 金属热处理,2021,46(9):21-27.

    DU P J ,WU D. Effect of prior austenite grain size on martensitic transformation in medium manganese steel[J]. Heat Treatment of Metals,2021,46(9):21-27.

    [11] 孙璐,李建英,武冠华,等. 退火工艺对高强冷轧钢带组织和性能的影响[J]. 河南冶金,2019,27(6):22-24.

    SUN L ,LI J Y ,WU G H ,et al. Effect of annealing process parameters on microstructure and properties of high strength cold rolled steel strip[J]. Henan Metallurgy,2019,27(6):22-24.

    [12] 李慧远,戴杰涛,冼玲标,等. 退火工艺对DP590GA双相钢组织和性能的影响[J]. 金属热处理,2021,46(1):50-54.

    LI H Y ,DAI J T ,XIAN L B ,et al. Effect of annealing process on microstructure and properties of dual phase steel DP590GA[J]. Heat Treatment of Metals,2021,46(1):50-54.

    [13] 杨登翠,冯运莉,王晓静. 退火工艺对中碳钢热轧板组织和力学性能的影响[J]. 热加工工艺,2017,46(20):248-251.

    YANG D C ,FENG Y L ,WANG X J. Effects of annealing process on microstructure and mechanical properties of hot rolled medium carbon steel plate[J]. Hot Working Technology,2017,46(20):248-251.

    [14] 吴秋云,潘红波,刘永刚,等. I&Q&P工艺对C-Si-Mn-Nb双相钢显微组织和力学性能的影响[J]. 金属热处理,2023,48(3):45-50.

    WU Q Y ,PAN H B ,LIU Y G ,et al. Effect of I & Q & P process on microstructure and mechanical properties of C-Si-Mn-Nb dual-phase steel[J]. Heat Treatment of Metals,2023,48(3):45-50.

    [15] 侯美伶,李晨潇,孔祥伟,等. 热处理工艺对Fe-Mn-Al-C钢组织和性能的影响[J]. 特殊钢,2023,44(2):96-100.

    HOU M L ,LI C X ,KONG X W ,et al. Effect of heat treatment process on microstructure and properties of Fe-Mn-Al-C steel[J]. Special Steel,2023,44(2):96-100.

    [16] WU J ,BAO L ,GU Y ,et al. The strengthening and toughening mechanism of dual martensite in quenching-partitioning steels[J]. Materials Science and Engineering:A,2020,772:138765.
    [17] TKACHEV E ,BORISOV S ,BORISOVA Y ,et al. Strength–toughness of a low-alloy 0.25C steel treated by Q&P processing[J]. Materials,2023,16(10):3851.
    [18] 陈亚Fe-Mn-Al-Si系TRIP/TWIP钢抗疲劳和抗冲击性能的研究长沙湖南大学2017陈亚. Fe-Mn-Al-Si系TRIP/TWIP钢抗疲劳和抗冲击性能的研究[D]. 长沙:湖南大学,2017.

    CHEN YStudy on Fatigue and Impat resistane of Fe-Mn-Al-Si Series TRIP/TWIP SteelChangshaHunan University2017CHEN Y. Study on Fatigue and Impat resistane of Fe-Mn-Al-Si Series TRIP/TWIP Steel[D]. Changsha:Hunan University,2017.

图(8)  /  表(1)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  7
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-26
  • 修回日期:  2024-09-12
  • 刊出日期:  2024-10-19

目录

    /

    返回文章
    返回