Microstructure and Properties of ZL114A Aluminum Matrix Composites Reinforced by Different Content In-situ TiB2 Particles
-
摘要:
以ZL114A合金为基体,采用混合盐反应法制备不同质量分数(3%,6%,9%)原位自生TiB2颗粒增强ZL114A铝基复合材料,研究了复合材料的组织和拉伸性能,并分析TiB2在基体中的生长机制。结果表明:复合材料的主要物相均为铝相、硅相和TiB2相,说明成功制备了原位自生TiB2颗粒增强ZL114A铝基复合材料;随着TiB2含量的增加,基体晶粒细化且出现球化,共晶硅明显细化且其形貌由粗大长条状变为短棒状;原位生成的TiB2颗粒使得复合材料的强度和塑性均得到提高,断裂形式由ZL114合金的脆性断裂转变为韧脆混合断裂;随着TiB2含量的增加,抗拉强度和断后伸长率均先升高后降低,当TiB2质量分数为6%时达到最大,分别为237.4 MPa,6.7%;在制备复合材料过程中基体中先析出TiB2近球形核心,随着球形核心的长大,其表面形成小平面,最终形成六棱台组合体的典型TiB2形貌。
-
关键词:
- 原位自生TiB2颗粒 /
- 铝基复合材料 /
- 拉伸性能 /
- 显微组织 /
- 生长机制
Abstract:With ZL114A alloy as matrix, ZL114A aluminum matrix composites reinforced by in-situ TiB2 particles with different mass fractions (3%, 6%, 9%) were prepared by mixed salt reaction method. The microstructure and tensile properties of composites were studied, and the growth mechanism of TiB2 in the matrix was analyzed. The results show that the main phases of the composites were Al, Si and TiB2 phases, indicating that the in-situ TiB2 particle reinforced ZL114A aluminum matrix composites were successfully prepared. With the increase of TiB2 content, the grains of the matrix were refined and spheroidized, the eutectic silicon was obviously refined and its morphology changed from coarse long strip to short rod. The in-situ TiB2 particles increased the strength and plasticity of the composite, and the fracture mode changed from brittle fracture of ZL114A alloy to mixed ductile-brittle fracture. With the increase of TiB2 content, the tensile strength and percentage elongation after fracture first increased and then decreased, and reached the maximum when the mass fraction of TiB2 was 6%, which were 237.4 MPa and 6.7%, respectively. During the preparation process of the composites, a nearly spherical TiB2 core was first precipitated from the matrix. With the growth of the spherical core, a small plane was formed on the surface of the spherical core, and finally the typical TiB2 morphology of the hexagonal platform combination was formed.
-
0. 引言
车轴是铁路机车中一个十分重要的构件,世界各国对提高车轴的可靠性均十分重视[1-5]。我国铁道车辆的提速加载对大功率机车及高速列车车轴用钢的性能提出了更高的要求。国内常用的机车车轴材料是40钢和50钢。40钢强度稍低,但韧性好,50钢强度较高,但韧性稍差,2种材料均已无法满足高速、重载铁路机车的要求[6]。EA4T钢是一种广泛使用于国外地铁动车车轴及大功率机车车轴的钢种,也是欧洲标准EN 13261规定的高速客车车轴用钢。之前我国的合金钢车轴主要靠进口,为了快速实现国家铁路机车重载技术和提速战略,通过引进、吸收、消化已实现车轴的国产化,许多新型机车都采用了国产的EA4T钢车轴,如9 600 kW牵引机车和武汉、深圳的地铁车辆等。
EA4T车轴钢的常规热处理工艺为调质热处理(淬火+高温回火),根据EN 13261:2009标准要求,调质热处理EA4T钢车轴轴颈1/2半径处的显微组织应全部为马氏体/贝氏体组织(以下简称为M/B组织)。当轴颈直径较小,如180 mm时,采用常规工艺调质热处理后,其1/2半径处可以全部获得M/B组织;但当轴颈直径较大,达到280 mm时,其1/2半径处在常规工艺下获得全部的M/B组织则较为困难[7-8]。在实际生产中为了保证大尺寸车轴淬火加热时心部能够淬透,常常采用提高加热温度(高于铁素体转变为奥氏体的终了温度Ac3 30~50 ℃)的方法进行淬火[9],而回火温度及方式尚需进一步研究。为了确定大尺寸国产EA4T钢车轴的热处理工艺,作者设计了EA4T钢等效车轴的热处理工艺,研究了热处理后等效车轴不同位置的显微组织与性能,据此确定车轴的调质热处理工艺并进行车轴的现场验证。
1. 试样制备与试验方法
试验材料为东北特殊钢集团股份有限公司抚顺特殊钢股份有限公司生产的尺寸280 mm×280 mm×350 mm的热轧退火态EA4T钢车轴毛坯,化学成分如表1所示,符合EN 13261:2009标准要求。在毛坯上加工出规格ϕ280 mm的圆柱体试样,将其作为实际尺寸为ϕ256 mm的EA4T钢车轴的等效车轴,并对其进行调质热处理预试验。
表 1 EA4T钢的化学成分Table 1. Chemical composition of EA4T steel项目 质量分数/% C Si Mn Cr Mo Ni P S V Al Cu Fe 测试值 0.28 0.32 0.70 1.06 0.24 0.17 0.004 0.001 0.04 0.029 0.03 余 标准值 0.22~0.29 0.15~0.40 0.50~0.80 0.90~1.20 0.15~0.30 ≤0.30 ≤0.020 ≤0.015 ≤0.06 ≤0.30 余 根据前期试验结果,EA4T钢的Ac3为840 ℃,在常规条件下其淬火温度应为870~890 ℃。但由于EN 13261:2009标准要求,EA4T钢在淬火时应具有较高的淬透性,而提高奥氏体加热温度可以获得更高的淬透性,故将等效车轴的淬火温度范围设置为890~920 ℃。等效车轴的淬火保温时间可以采用经验公式来估算,公式[10]如下:
(1) 式中:t为保温时间,min;α为加热系数,取值范围为0.9~1.1 min·mm−1;K为加热时的修正系数,取1.2;D为工件的有效厚度,取280 mm。
由式(1)计算得到,等效车轴的淬火保温时间为5~6 h。根据上述分析并结合前期研究[8],确定淬火工艺为900 ℃×5 h。为了确定大尺寸车轴坯的回火工艺,将EA4T钢等效车轴进行900 ℃×5 h水淬处理后,分别进行595,610,650 ℃保温6 h水冷回火处理[8]。
按照EN 13261:2009进行车轴的显微组织及力学性能研究。在不同调质工艺处理后的等效车轴表层、1/2半径处和心部截取金相试样,经打磨、抛光,用体积分数4%硝酸乙醇溶液腐蚀20 s后,用清水冲洗试样,并用乙醇擦拭,再用吹风机吹干,采用NEOPHOT-21型光学显微镜观察显微组织。按照GB/T 228—2002,在车轴表层、1/2半径处和心部位置截取拉伸试样,拉伸试样的尺寸为直径10 mm标准试样尺寸的10倍,在AG-250KNISMO型电子拉压试验机上进行室温拉伸试验,拉伸速度为10 mm·min−1,相同条件下测3次取平均值。按照GB/T 229—2007,在等效车轴表层、1/2半径处和心部分别沿轴向(即横向)和径向(即纵向)截取标准夏比U型冲击试样,在JXB-300型摆锤式冲击试验机上进行室温冲击试验,冲击速度为5 m·s−1,相同条件下测3次取平均值。根据等效车轴测试结果,确定符合标准要求的调质热处理工艺后进行规格ϕ256 mm EA4T钢车轴的现场验证,拉伸试样的尺寸为直径10 mm标准试样尺寸的5倍,冲击试样为5 mm缺口深度的U型冲击试样,测试设备及参数同前。采用Zeiss Supra 55型场发射扫描电镜(SEM)观察拉伸断口形貌。
2. 试验结果与讨论
2.1 调质热处理后等效车轴的组织和性能
由表2可以看出,与EN 13261:2009标准要求的力学性能(屈服强度不低于420 MPa,抗拉强度为650~800 MPa,断后伸长率不低于18%,纵向和横向冲击吸收能量分别不低于50,25 J)相比,等效车轴经900 ℃水淬后,除了595 ℃水冷回火后不同位置的抗拉强度,以及610 ℃水冷回火后表层的抗拉强度偏高之外,其余条件下的强度、断后伸长率、断面收缩率以及纵向与横向冲击韧性均符合要求,同时还存在较大的富裕量。
表 2 等效车轴经900 ℃×5 h水淬和不同温度保温6 h水冷回火后的力学性能Table 2. Mechanical properties of equivalent axle after 900 ℃×5 h water quenching and tempering at different temperatures for 6 h and water cooling回火温度/℃ 位置 屈服强度/MPa 抗拉强度/MPa 断后伸长率/% 断面收缩率/% 冲击吸收能量/J 纵向 横向 595 表层 719.0 866.0 19.0 62.5 156.0 128.0 1/2半径处 603.0 866.0 19.5 68.0 101.0 76.0 心部 694.0 861.0 18.5 62.5 107.0 93.0 610 表层 728.0 843.0 20.5 71.5 129.0 103.0 1/2半径处 628.0 763.0 27.5 65.0 101.0 155.0 心部 543.0 696.0 22.3 65.5 144.0 128.0 650 表层 629.0 781.0 19.0 67.0 141.0 164.0 1/2半径处 628.0 762.0 19.0 72.5 210.0 155.0 心部 595.0 749.0 18.3 66.5 111.0 169.0 由图1可以看出,等效车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火后,除了心部含有少量铁素体外,表层以及1/2半径处的组织基本为回火M/B组织,符合EN 13261:2009对车轴组织的要求。心部与表层、1/2半径处组织差异的原因主要在于冷却速率的不同,心部冷却速率较慢,未发生完全马氏体转变,导致生成少量铁素体,表层和1/2半径处冷却速率较快,形成了回火M/B组织。这种回火M/B组织具有较高的硬度和耐磨性,对车轴的表层性能有积极影响[11-12]。综上,确定EA4T钢车轴的调质热处理工艺为900 ℃×5 h水淬和650 ℃×6 h水冷回火。
2.2 调质热处理工艺的现场验证
在热处理车间采用规格ϕ256 mm的EA4T钢车轴对前文确定的调质热处理工艺(900 ℃×5 h水淬和650 ℃×6 h水冷回火)进行现场验证。由表3可以看出,规格ϕ256 mm的EA4T钢车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火后,不同位置的力学性能均完全满足EN 13261:2009标准要求。由图2可以看出,不同部位的组织均为回火M/B组织,也满足EN 13261:2009标准要求。
位置 屈服强度/MPa 抗拉强度/MPa 断后伸长率/% 断面收缩率/% 冲击吸收能量/J 纵向 横向 表层 653.0 788.0 21.5 70.0 65.3 72.0 1/2半径处 569.0 717.0 21.5 65.0 80.0 71.3 心部 527.0 695.0 20.0 62.0 72.0 73.3 由图3和图4可以看出,车轴不同位置所取的拉伸试样在断裂前均发生了大量的塑性变形,为韧性断裂。宏观断口表现出明显的缩颈,且仅存在表现韧性的纤维区和剪切唇,而不存在表现脆性的放射区。纤维区微观均呈韧窝特征。在拉伸应力的作用下,试样发生颈缩而在最小截面处形成三维应力,其值在轴线方向上最大,这些三维应力使晶界、缺陷等处形成显微孔洞;随着应力的提高,孔洞不断长大且相互连接,同时产生新的孔洞,从而使裂纹缓慢形成并扩展,最终在断口上留下韧窝状的区域。综上所述,国产EA4T钢车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火的调质热处理后,其力学性能和组织均符合EN 13261:2009标准要求。
图 4 经900 ℃×5 h水淬和650 ℃×6 h水冷回火后ϕ256 mm车轴不同位置拉伸试样的断口SEM形貌Figure 4. Fracture SEM morphology of tensile samples in different areas ofϕ256 mm axle after 900 ℃×5 h water quenching and 650 ℃×6 h water cooling tempering: (a) surface layer, overall morphology;(b) surface layer, micromorphology of fiber area;(c) 1/2 radius position, overall morphology;(d) 1/2 radius position, micromorphology of fiber area;(e) core, overall morphology and (f) core, micromorphology of fiber area3. 结论
(1)国产ϕ280 mm EA4T钢等效车轴在进行900 ℃×5 h水淬和595 ℃×6 h水冷回火处理后不同位置以及610 ℃×6 h水冷回火后表层的抗拉强度均偏高,650 ℃×6 h水冷回火后的强度、断后伸长率、断面收缩率以及纵向与横向冲击韧性均符合EN 13261:2009标准要求,组织也基本为回火M/B组织。确定EA4T钢车轴的调质热处理工艺为900 ℃×5 h水淬和650 ℃×6 h水冷回火。
(2)现场验证得到经900 ℃×5 h水淬和650 ℃×6 h水冷回火后,国产ϕ256 mm EA4T钢车轴表层、1/2半径处和心部处的力学性能和显微组织均符合EN 13261:2009标准要求,不同位置取样拉伸后均发生韧性断裂,断口均由纤维区和剪切唇组成,纤维区呈韧窝形貌。
-
表 1 ZL114A铝合金的化学成分
Table 1 Chemical composition of ZL114A aluminum alloy
元素 Si Mg Ti B Fe Al 质量分数/% 6.5~7.5 0.45~0.6 0.1~0.2 <0.05 <0.05 余 -
[1] 刘闪光,虞秀勇,毛郭灵,等. 钇在亚共晶铝硅合金中的作用研究进展[J]. 材料导报,2022,36(15):101-107. LIU S G ,YU X Y ,MAO G L ,et al. Research progress on the role of yttrium in hypoeutectic Al-Si alloys[J]. Materials Reports,2022,36(15):101-107.
[2] LIANG C ,CHEN Z H ,HUANG Z Y ,et al. Optimizing microstructures and mechanical properties of hypereutectic Al-18%Si alloy via manipulating its parent liquid state[J]. Materials Science and Engineering:A,2017,690:387-392. [3] 卢宏远. 汽车行业的变革对我国压铸业的影响[J]. 铸造,2022,71(6):675-682. LU H Y. Influence of the revolution of automobile industry on China's die casting industry[J]. Foundry,2022,71(6):675-682.
[4] 范晓明,罗世旭,卢晓斌,等. Sc含量对AlSiFeMnMg合金的组织和力学性能的影响[J]. 特种铸造及有色合金,2023,43(8):1126-1131. FAN X M ,LUO S X ,LU X B ,et al. Effects of Sc content on microstructure and mechanical properties of AlSiFeMnMg alloy[J]. Special Casting & Nonferrous Alloys,2023,43(8):1126-1131.
[5] 蔡翔,张辉,陈爽. 粉末挤压成型制备SiCp/Al复合材料的显微组织及性能[J]. 机械工程材料,2017,41(7):43-48. CAI X ,ZHANG H ,CHEN S. Microstructure and properties of SiCp/Al composite prepared by powder extrusion forming[J]. Materials for Mechanical Engineering,2017,41(7):43-48.
[6] 李晓微,吴和保. Al2O3(p)增强Al基复合材料的制备及力学性能[J]. 铸造,2023,72(4):409-414. LI X W ,WU H B. Preparation and mechanical properties of Al2O3(p) reinforced Al matrix composites[J]. Foundry,2023,72(4):409-414.
[7] CHOUDHARY M ,SHARMA A ,ARAVIND RAJ S ,et al. Contemporary review on carbon nanotube(CNT)composites and their impact on multifarious applications[J]. Nanotechnology Reviews,2022,11(1):2632-2660. [8] ZHANG X ,HU J Y ,DONG B X ,et al. Effect of Cu and Zn elements on morphology of ceramic particles and interfacial bonding in TiB2/Al composites[J]. Ceramics International,2022,48(18):25894-25904. [9] GAO Q ,WU S S ,LV S L ,et al. Preparation of in situ 5vol% TiB2 particulate reinforced Al-4.5Cu alloy matrix composites assisted by improved mechanical stirring process[J]. Materials & Design,2016,94:79-86. [10] JI S X ,AMIRKHANLU F ,MOSTAED A ,et al. Atomic structure and interface chemistry in a high-stiffness and high-strength Al-Si-Mg/TiB2 nanocomposite[J]. Materials Science and Engineering:A,2019,763:138072. [11] 王浩伟. 原位自生陶瓷颗粒增强铝基复合材料制备及应用[J]. 航空制造技术,2021,64(16):14-26. WANG H W. Preparation and application of in situ ceramic particles reinforced Al matrix composites[J]. Aeronautical Manufacturing Technology,2021,64(16):14-26.
[12] 杨清,陈哲,李险峰,等. 原位自生TiB2/Al基复合材料的制备及性能[J]. 宇航材料工艺,2021,51(4):48-62. YANG Q ,CHEN Z ,LI X F ,et al. The fabrication and performance of the in situ TiB2/Al composites[J]. Aerospace Materials & Technology,2021,51(4):48-62.
[13] 李永飞,黄礼新,王立生,等. 原位自生TiB2/Al复合材料的组织与力学性能[J]. 中国有色金属学报,2020,30(1):33-39. LI Y F ,HUANG L X ,WANG L S ,et al. Microstructure and mechanical properties of in situ TiB2/Al composites[J]. The Chinese Journal of Nonferrous Metals,2020,30(1):33-39.
[14] 李聪,徐宏,毛红奎,等. 原位合成5TiB2/Al-4.5Cu复合材料的组织及性能[J]. 特种铸造及有色合金,2023,43(4):469-474. LI C ,XU H ,MAO H K ,et al. Microstructure and properties of in situ synthesized 5TiB2/Al-4.5Cu composites[J]. Special Casting & Nonferrous Alloys,2023,43(4):469-474.
[15] WANG K ,JIANG H Y ,JIA Y W ,et al. Nanoparticle-inhibited growth of primary aluminum in Al-10Si alloys[J]. Acta Materialia,2016,103:252-263. [16] LI Q ,QIU F ,DONG B X ,et al. Processing,multiscale microstructure refinement and mechanical property enhancement of hypoeutectic Al-Si alloys via in situ bimodal-sized TiB2 particles[J]. Materials Science and Engineering:A,2020,777:139081. [17] RAO J H ,ZHANG Y ,FANG X Y ,et al. The origins for tensile properties of selective laser melted aluminium alloy A357[J]. Additive Manufacturing,2017,17:113-122. [18] LI P T ,WU Y Y ,LIU X F. Controlled synthesis of different morphologies of TiB2 microcrystals by aluminum melt reaction method[J]. Materials Research Bulletin,2013,48(6):2044-2048. [19] DONG B X ,LI Q ,WANG Z F ,et al. Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in situ TiB2 particles with specific spatial distribution[J]. Composites Part B:Engineering,2021,217:108912. [20] CHEN F ,CHEN Z N ,MAO F ,et al. TiB2 reinforced aluminum based in situ composites fabricated by stir casting[J]. Materials Science and Engineering:A,2015,625:357-368. [21] LIU Z W ,CHENG N ,ZHENG Q L ,et al. Processing and tensile properties of A356 composites containing in situ small-sized Al3Ti particulates[J]. Materials Science and Engineering:A,2018,710:392-399.