• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

固溶温度对TC16钛合金显微组织与冲击韧性的影响

张明玉, 张天蔚, 岳旭

张明玉, 张天蔚, 岳旭. 固溶温度对TC16钛合金显微组织与冲击韧性的影响[J]. 机械工程材料, 2024, 48(12): 25-30. DOI: 10.11973/jxgccl230574
引用本文: 张明玉, 张天蔚, 岳旭. 固溶温度对TC16钛合金显微组织与冲击韧性的影响[J]. 机械工程材料, 2024, 48(12): 25-30. DOI: 10.11973/jxgccl230574
ZHANG Mingyu, ZHANG Tianwei, YUE Xu. Effect of Solution Temperature on Microstructure and Impact Toughness of TC16 Titanium Alloy[J]. Materials and Mechanical Engineering, 2024, 48(12): 25-30. DOI: 10.11973/jxgccl230574
Citation: ZHANG Mingyu, ZHANG Tianwei, YUE Xu. Effect of Solution Temperature on Microstructure and Impact Toughness of TC16 Titanium Alloy[J]. Materials and Mechanical Engineering, 2024, 48(12): 25-30. DOI: 10.11973/jxgccl230574

固溶温度对TC16钛合金显微组织与冲击韧性的影响

基金项目: 

新疆维吾尔自治区重点研发计划项目 2022B01029

详细信息
    作者简介:

    张明玉(1989—),男,辽宁大连人,工程师,博士

  • 中图分类号: TG156.1

Effect of Solution Temperature on Microstructure and Impact Toughness of TC16 Titanium Alloy

  • 摘要:

    分别在两相区温度(840,860 ℃)与单相区温度(880 ℃)下对TC16钛合金进行2 h固溶处理,再进行560 ℃×8 h时效处理,研究了固溶温度对固溶态和时效态合金显微组织、物相组成和冲击韧性的影响。结果表明:经固溶处理后TC16钛合金组织主要由α相与α"相组成,再经时效处理后,主要由α相和β相组成;固溶温度的升高使固溶态合金中的初生α相含量降低,等轴化程度增加,针状α相和α"相含量增加,当固溶温度升高到880 ℃时,初生α相完全消失;再经时效处理后,组织中形成大量针状次生α相,且次生α相含量随固溶温度的升高而增加,而初生α相含量和尺寸与固溶态相比无明显变化。随着固溶温度的升高,固溶处理后合金的冲击吸收能量和冲击韧性值增加;经时效处理后,二者相比于固溶态均减小,且随固溶温度升高而不断降低;随着固溶温度的升高,冲击断口中韧窝数量减少,当固溶温度为880 ℃时,冲击断口主要由解理面组成;再经时效处理后,断口中出现较多二次裂纹,随着固溶温度的升高,二次裂纹数量增加。

    Abstract:

    TC16 titanium alloy was treated by solution at two-phase region temperature (840, 860 ℃) and single-phase region temperature (880 ℃) for 2 h, and then aging at 560 ℃ for 8 h. The effects of solution temperature on the microstructure, phase composition and impact toughness of alloy in the solution state and in the aging state were studied. The results show that the microstructure of TC16 titanium alloy after solution was mainly composed of α phase and α" phase, and after aging was mainly composed of α phase and β phase. With the increase of solution temperature, the content of primary α phase in the soluted alloy decreased, the equiaxialization degree increased, and the content of acicular α phase and α" phase increased. When the solution temperature increased to 880 ℃, the primary α phase disappeared completely. After aging, a large number of needle-like secondary α phase was formed in the microstructure, and the content of secondary α phase increased with the increase of solution temperature, while the content and size of primary α phases had no obvious change compared with those in the solution state. With the increase of solution temperature, the impact absorbed energy and impact toughness value of the alloy after solution increased. After aging, both of them decreased comparing with those in solution state, and decreased with the increase of solution temperature. With the increase of solution temperature, the number of dimples in the impact fracture decreased. When the solution temperature was 880 ℃, the impact fracture was mainly cleavage plane. After aging, more secondary cracks appeared in the fracture. With the increase of solution temperature, the number of secondary cracks increased.

  • 车轴是铁路机车中一个十分重要的构件,世界各国对提高车轴的可靠性均十分重视[1-5]。我国铁道车辆的提速加载对大功率机车及高速列车车轴用钢的性能提出了更高的要求。国内常用的机车车轴材料是40钢和50钢。40钢强度稍低,但韧性好,50钢强度较高,但韧性稍差,2种材料均已无法满足高速、重载铁路机车的要求[6]。EA4T钢是一种广泛使用于国外地铁动车车轴及大功率机车车轴的钢种,也是欧洲标准EN 13261规定的高速客车车轴用钢。之前我国的合金钢车轴主要靠进口,为了快速实现国家铁路机车重载技术和提速战略,通过引进、吸收、消化已实现车轴的国产化,许多新型机车都采用了国产的EA4T钢车轴,如9 600 kW牵引机车和武汉、深圳的地铁车辆等。

    EA4T车轴钢的常规热处理工艺为调质热处理(淬火+高温回火),根据EN 13261:2009标准要求,调质热处理EA4T钢车轴轴颈1/2半径处的显微组织应全部为马氏体/贝氏体组织(以下简称为M/B组织)。当轴颈直径较小,如180 mm时,采用常规工艺调质热处理后,其1/2半径处可以全部获得M/B组织;但当轴颈直径较大,达到280 mm时,其1/2半径处在常规工艺下获得全部的M/B组织则较为困难[7-8]。在实际生产中为了保证大尺寸车轴淬火加热时心部能够淬透,常常采用提高加热温度(高于铁素体转变为奥氏体的终了温度Ac3 30~50 ℃)的方法进行淬火[9],而回火温度及方式尚需进一步研究。为了确定大尺寸国产EA4T钢车轴的热处理工艺,作者设计了EA4T钢等效车轴的热处理工艺,研究了热处理后等效车轴不同位置的显微组织与性能,据此确定车轴的调质热处理工艺并进行车轴的现场验证。

    试验材料为东北特殊钢集团股份有限公司抚顺特殊钢股份有限公司生产的尺寸280 mm×280 mm×350 mm的热轧退火态EA4T钢车轴毛坯,化学成分如表1所示,符合EN 13261:2009标准要求。在毛坯上加工出规格ϕ280 mm的圆柱体试样,将其作为实际尺寸为ϕ256 mm的EA4T钢车轴的等效车轴,并对其进行调质热处理预试验。

    表  1  EA4T钢的化学成分
    Table  1.  Chemical composition of EA4T steel
    项目质量分数/%
    CSiMnCrMoNiPSVAlCuFe
    测试值0.280.320.701.060.240.170.0040.0010.040.0290.03
    标准值0.22~0.290.15~0.400.50~0.800.90~1.200.15~0.30≤0.30≤0.020≤0.015≤0.06≤0.30
    下载: 导出CSV 
    | 显示表格

    根据前期试验结果,EA4T钢的Ac3为840 ℃,在常规条件下其淬火温度应为870~890 ℃。但由于EN 13261:2009标准要求,EA4T钢在淬火时应具有较高的淬透性,而提高奥氏体加热温度可以获得更高的淬透性,故将等效车轴的淬火温度范围设置为890~920 ℃。等效车轴的淬火保温时间可以采用经验公式来估算,公式[10]如下:

    t=αKD (1)

    式中:t为保温时间,min;α为加热系数,取值范围为0.9~1.1 min·mm−1K为加热时的修正系数,取1.2;D为工件的有效厚度,取280 mm。

    由式(1)计算得到,等效车轴的淬火保温时间为5~6 h。根据上述分析并结合前期研究[8],确定淬火工艺为900 ℃×5 h。为了确定大尺寸车轴坯的回火工艺,将EA4T钢等效车轴进行900 ℃×5 h水淬处理后,分别进行595,610,650 ℃保温6 h水冷回火处理[8]

    按照EN 13261:2009进行车轴的显微组织及力学性能研究。在不同调质工艺处理后的等效车轴表层、1/2半径处和心部截取金相试样,经打磨、抛光,用体积分数4%硝酸乙醇溶液腐蚀20 s后,用清水冲洗试样,并用乙醇擦拭,再用吹风机吹干,采用NEOPHOT-21型光学显微镜观察显微组织。按照GB/T 228—2002,在车轴表层、1/2半径处和心部位置截取拉伸试样,拉伸试样的尺寸为直径10 mm标准试样尺寸的10倍,在AG-250KNISMO型电子拉压试验机上进行室温拉伸试验,拉伸速度为10 mm·min−1,相同条件下测3次取平均值。按照GB/T 229—2007,在等效车轴表层、1/2半径处和心部分别沿轴向(即横向)和径向(即纵向)截取标准夏比U型冲击试样,在JXB-300型摆锤式冲击试验机上进行室温冲击试验,冲击速度为5 m·s−1,相同条件下测3次取平均值。根据等效车轴测试结果,确定符合标准要求的调质热处理工艺后进行规格ϕ256 mm EA4T钢车轴的现场验证,拉伸试样的尺寸为直径10 mm标准试样尺寸的5倍,冲击试样为5 mm缺口深度的U型冲击试样,测试设备及参数同前。采用Zeiss Supra 55型场发射扫描电镜(SEM)观察拉伸断口形貌。

    表2可以看出,与EN 13261:2009标准要求的力学性能(屈服强度不低于420 MPa,抗拉强度为650~800 MPa,断后伸长率不低于18%,纵向和横向冲击吸收能量分别不低于50,25 J)相比,等效车轴经900 ℃水淬后,除了595 ℃水冷回火后不同位置的抗拉强度,以及610 ℃水冷回火后表层的抗拉强度偏高之外,其余条件下的强度、断后伸长率、断面收缩率以及纵向与横向冲击韧性均符合要求,同时还存在较大的富裕量。

    表  2  等效车轴经900 ℃×5 h水淬和不同温度保温6 h水冷回火后的力学性能
    Table  2.  Mechanical properties of equivalent axle after 900 ℃×5 h water quenching and tempering at different temperatures for 6 h and water cooling
    回火温度/℃位置屈服强度/MPa抗拉强度/MPa断后伸长率/%断面收缩率/%冲击吸收能量/J
    纵向横向
    595表层719.0866.019.062.5156.0128.0
    1/2半径处603.0866.019.568.0101.076.0
    心部694.0861.018.562.5107.093.0
    610表层728.0843.020.571.5129.0103.0
    1/2半径处628.0763.027.565.0101.0155.0
    心部543.0696.022.365.5144.0128.0
    650表层629.0781.019.067.0141.0164.0
    1/2半径处628.0762.019.072.5210.0155.0
    心部595.0749.018.366.5111.0169.0
    下载: 导出CSV 
    | 显示表格

    图1可以看出,等效车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火后,除了心部含有少量铁素体外,表层以及1/2半径处的组织基本为回火M/B组织,符合EN 13261:2009对车轴组织的要求。心部与表层、1/2半径处组织差异的原因主要在于冷却速率的不同,心部冷却速率较慢,未发生完全马氏体转变,导致生成少量铁素体,表层和1/2半径处冷却速率较快,形成了回火M/B组织。这种回火M/B组织具有较高的硬度和耐磨性,对车轴的表层性能有积极影响[11-12]。综上,确定EA4T钢车轴的调质热处理工艺为900 ℃×5 h水淬和650 ℃×6 h水冷回火。

    图  1  等效车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火后不同位置的显微组织
    Figure  1.  Microstructures of different areas in equivalent axle after 900 ℃×5 h water quenching and 650 ℃×6 h water cooling tempering: (a) surface layer;(b) 1/2 radius position and (c) core

    在热处理车间采用规格ϕ256 mm的EA4T钢车轴对前文确定的调质热处理工艺(900 ℃×5 h水淬和650 ℃×6 h水冷回火)进行现场验证。由表3可以看出,规格ϕ256 mm的EA4T钢车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火后,不同位置的力学性能均完全满足EN 13261:2009标准要求。由图2可以看出,不同部位的组织均为回火M/B组织,也满足EN 13261:2009标准要求。

    位置屈服强度/MPa抗拉强度/MPa断后伸长率/%断面收缩率/%冲击吸收能量/J
    纵向横向
    表层653.0788.021.570.065.372.0
    1/2半径处569.0717.021.565.080.071.3
    心部527.0695.020.062.072.073.3
    下载: 导出CSV 
    | 显示表格
    图  2  ϕ256 mm车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火后不同位置的显微组织
    Figure  2.  Microstructures of different areas inϕ256 mm axle after 900 ℃×5 h water quenching and 650 ℃×6 h water cooling tempering: (a) surface layer;(b) 1/2 radius position and (c) core

    图3图4可以看出,车轴不同位置所取的拉伸试样在断裂前均发生了大量的塑性变形,为韧性断裂。宏观断口表现出明显的缩颈,且仅存在表现韧性的纤维区和剪切唇,而不存在表现脆性的放射区。纤维区微观均呈韧窝特征。在拉伸应力的作用下,试样发生颈缩而在最小截面处形成三维应力,其值在轴线方向上最大,这些三维应力使晶界、缺陷等处形成显微孔洞;随着应力的提高,孔洞不断长大且相互连接,同时产生新的孔洞,从而使裂纹缓慢形成并扩展,最终在断口上留下韧窝状的区域。综上所述,国产EA4T钢车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火的调质热处理后,其力学性能和组织均符合EN 13261:2009标准要求。

    图  3  经900 ℃×5 h水淬和650 ℃×6 h水冷回火后ϕ256 mm车轴不同位置拉伸试样试验后的宏观形貌
    Figure  3.  Macromorphology of tensile samples in different areas ofϕ256 mm axle after 900 ℃×5 h water quenching and 650 ℃×6 h water cooling tempering after test
    图  4  经900 ℃×5 h水淬和650 ℃×6 h水冷回火后ϕ256 mm车轴不同位置拉伸试样的断口SEM形貌
    Figure  4.  Fracture SEM morphology of tensile samples in different areas ofϕ256 mm axle after 900 ℃×5 h water quenching and 650 ℃×6 h water cooling tempering: (a) surface layer, overall morphology;(b) surface layer, micromorphology of fiber area;(c) 1/2 radius position, overall morphology;(d) 1/2 radius position, micromorphology of fiber area;(e) core, overall morphology and (f) core, micromorphology of fiber area

    (1)国产ϕ280 mm EA4T钢等效车轴在进行900 ℃×5 h水淬和595 ℃×6 h水冷回火处理后不同位置以及610 ℃×6 h水冷回火后表层的抗拉强度均偏高,650 ℃×6 h水冷回火后的强度、断后伸长率、断面收缩率以及纵向与横向冲击韧性均符合EN 13261:2009标准要求,组织也基本为回火M/B组织。确定EA4T钢车轴的调质热处理工艺为900 ℃×5 h水淬和650 ℃×6 h水冷回火。

    (2)现场验证得到经900 ℃×5 h水淬和650 ℃×6 h水冷回火后,国产ϕ256 mm EA4T钢车轴表层、1/2半径处和心部处的力学性能和显微组织均符合EN 13261:2009标准要求,不同位置取样拉伸后均发生韧性断裂,断口均由纤维区和剪切唇组成,纤维区呈韧窝形貌。

  • 图  1   冲击试样的尺寸

    Figure  1.   Size of impact specimen

    图  2   不同工艺处理后试验合金的XRD谱

    Figure  2.   XRD patterns of test alloy treated by different processes: (a) solution at different temperatures and (b) solution at different temperatures and aging at 580 ℃

    图  3   不同温度固溶处理后试验合金的显微组织

    Figure  3.   Microstructures of test alloy after solution at different temperatures

    图  4   不同温度固溶和560 ℃时效处理后试验合金的显微组织

    Figure  4.   Microstructures of test alloy after solid solution at different temperatures and aging at 560 ℃

    图  5   不同工艺处理后试验合金的冲击韧性

    Figure  5.   Impact toughness of test alloy treated by different processes: (a) solution at different temperatures and (b) solution at different temperatures and aging at 580 ℃

    图  6   不同温度固溶处理后试验合金的冲击断口SEM形貌

    Figure  6.   SEM morphology of impact fracture of test alloy after solution at different temperatures

    图  7   不同温度固溶和580 ℃时效处理后试验合金的冲击断口SEM形貌

    Figure  7.   SEM morphology of impact fracture of test alloy after solution at different temperatures and aging at 580 ℃

  • [1] LIU Q M ,LONG W M ,FU L ,et al. Hot deformation behavior of hydrogenated 0.21wt.%H Ti-0.3Mo-0.8Ni alloy welded joints[J]. Journal of Materials Engineering and Performance,2020,29(7):4814-4821.
    [2] CHUNG W C ,TSAY L W ,CHEN C. Microstructure and notch properties of heat-treated Ti-4.5Al-3V-2Mo-2Fe laser welds[J]. Materials Transactions,2009,50(3):544-550.
    [3] 李峰丽,张明玉,于成泉,等. 冷却方式对TC16钛合金丝材组织与力学性能的影响[J]. 材料热处理学报,2022,43(11):57-65.

    LI F L ,ZHANG M Y ,YU C Q ,et al. Effect of cooling method on microstructure and mechanical properties of TC16 titanium alloy wire[J]. Transactions of Materials and Heat Treatment,2022,43(11):57-65.

    [4] 杨万博,霍元明,何涛,等. 航空航天紧固件用TC16钛合金在冷压缩过程中的组织演变[J]. 稀有金属材料与工程,2022,51(2):386-391.

    YANG W B ,HUO Y M ,HE T ,et al. Microstructure evolution of TC16 titanium alloy for producing aerospace fasteners during cold compression[J]. Rare Metal Materials and Engineering,2022,51(2):386-391.

    [5] HUO Y M ,YANG W B ,HE T ,et al. A novel unified visco-plastic damage constitutive model considering stress state of TC16 titanium alloy during cold deformation[J]. Journal of Materials Engineering and Performance,2023,32(10):4522-4540.
    [6] TONG X L ,ZHANG M Y ,YU C Q ,et al. Effect of solution treatment on microstructure and mechanical properties of TC16 titanium alloy wire[J]. Journal of Physics:Conference Series,2022,2263(1):012011.
    [7] 李永兵,郭艳伟,乔家英,等. 退火工艺对TC16钛合金组织与性能的影响[J]. 金属热处理,2015,40(5):66-69.

    LI Y B ,GUO Y W ,QIAO J Y ,et al. Effects of annealing process on microstructure and properties of TC16 titanium alloy[J]. Heat Treatment of Metals,2015,40(5):66-69.

    [8] 张志强,董利民,胡明,等. 冷却速率对TC16钛合金显微组织和力学性能的影响[J]. 中国有色金属学报,2019,29(7):1391-1398.

    ZHANG Z Q ,DONG L M ,HU M ,et al. Effect of cooling rate on microstructure and mechanical properties of TC16 titanium alloy[J]. The Chinese Journal of Nonferrous Metals,2019,29(7):1391-1398.

    [9] 同晓乐,张明玉,岳旭,等. 固溶时效热处理对Ti-3Al-4.5V-5Mo(TC16)钛合金丝材微观组织与力学性能的影响[J]. 工业技术创新,2022,9(3):1-6.

    TONG X L ,ZHANG M Y ,YUE X ,et al. Effects of solution aging heat treatment on the microstructure and mechanical properties of wire materials of Ti-3Al-4.5V-5Mo(TC16)titanium alloy[J]. Industrial Technology Innovation,2022,9(3):1-6.

    [10] 辛社伟,赵永庆. 钛合金固态相变的归纳与讨论(Ⅳ):钛合金热处理的归类[J]. 钛工业进展,2009,26(3):26-29.

    XIN S W ,ZHAO Y Q. Inductions and discussions of solid state phase transformation of titanium alloy(Ⅳ):Classifications of heat treatment of titanium alloy[J]. Titanium Industry Progress,2009,26(3):26-29.

    [11] 朱宝辉,曾卫东,陈林,等. 固溶时效工艺对Ti-6Al-6V-2Sn钛合金棒材组织及性能的影响[J]. 中国有色金属学报,2018,28(4):677-684.

    ZHU B H ,ZENG W D ,CHEN L ,et al. Influences of solution and aging treatment process on microstructure and mechanical properties of Ti-6Al-6V-2Sn titanium alloy rods[J]. The Chinese Journal of Nonferrous Metals,2018,28(4):677-684.

    [12] 张明玉,运新兵,伏洪旺. 热处理冷却方式对TC10钛合金组织与性能的影响[J]. 金属热处理,2022,47(8):98-105.

    ZHANG M Y ,YUN X B ,FU H W. Effect of cooling method of heat treatment on microstructure and properties of TC10 titanium alloy[J]. Heat Treatment of Metals,2022,47(8):98-105.

    [13] YIN L J ,SUN Z C ,YIN Z K ,et al. The formation of precipitate-free zones in β-quenched TC18 titanium alloy during two phase field heat treatment[J]. Materials Characterization,2023,199:112774.
    [14] XU J W ,ZENG W D ,ZHAO Y W ,et al. Effect of microstructure evolution of the lamellar alpha on impact toughness in a two-phase titanium alloy[J]. Materials Science and Engineering:A,2016,676:434-440.
    [15] KESHAVARZ M K ,SIKAN F ,BOUTET C E ,et al. Impact properties of half stress-relieved and hot isostatic pressed Ti-6Al-4V components fabricated by laser powder bed fusion[J]. Materials Science and Engineering:A,2019,760:481-488.
    [16] LEI L ,ZHAO Y Q ,ZHAO Q Y ,et al. Impact toughness and deformation modes of Ti-6Al-4V alloy with different microstructures[J]. Materials Science and Engineering:A,2021,801:140411.
    [17] BUIRETTE C ,HUEZ J ,GEY N ,et al. Study of crack propagation mechanisms during Charpy impact toughness tests on both equiaxed and lamellar microstructures of Ti–6Al–4V titanium alloy[J]. Materials Science and Engineering:A,2014,618:546-557.
    [18] 张明玉,运新兵,伏洪旺. 固溶时效处理对TC11钛合金组织与冲击性能的影响[J]. 稀有金属材料与工程,2023,52(5):1759-1766.

    ZHANG M Y ,YUN X B ,FU H W. Effect of solution and aging treatment on microstructure and impact properties of TC11 titanium alloy[J]. Rare Metal Materials and Engineering,2023,52(5):1759-1766.

    [19] HUANG Y ,GAO H ,NIX W D ,et al. Mechanism-based strain gradient plasticity:II. Analysis[J]. Journal of the Mechanics and Physics of Solids,2000,48(1):99-128.
图(7)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  9
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-09-29
  • 刊出日期:  2024-12-19

目录

/

返回文章
返回