Research Status on Microstructure, Heat Treatment Process and Properties of Medium Manganese Steel
-
摘要:
中锰钢是在高锰钢的基础上通过适当降低锰含量而研制的第三代高强钢,具有良好的韧性和较高的强度,在磨料磨损、冲击磨料磨损、滑动摩擦磨损、滑动-腐蚀磨损等工况下均表现出良好的耐磨性能。对中锰钢的化学成分、显微组织、热处理工艺、力学性能和耐磨性能等方面的研究进展进行了综述,指出今后应从中锰钢显微组织调控、工业化生产和颗粒增强中锰钢基复合材料等方向进行重点研究。
Abstract:Medium manganese steel is a third-generation high-strength steel developed by appropriately reducing manganese content based on high manganese steel. It exhibits good toughness and high strength, demonstrating excellent wear resistance under various working conditions such as abrasive wear, impact abrasive wear, sliding friction wear, and sliding-corrosion wear. The research progress on the chemical composition, microstructure, heat treatment processes, mechanical properties, and wear resistance of medium manganese steel is reviewed. It is pointed out that future research should focus on the regulation of microstructure, industrial production, and particle-reinforced medium manganese steel-based composites.
-
0. 引言
车轴是铁路机车中一个十分重要的构件,世界各国对提高车轴的可靠性均十分重视[1-5]。我国铁道车辆的提速加载对大功率机车及高速列车车轴用钢的性能提出了更高的要求。国内常用的机车车轴材料是40钢和50钢。40钢强度稍低,但韧性好,50钢强度较高,但韧性稍差,2种材料均已无法满足高速、重载铁路机车的要求[6]。EA4T钢是一种广泛使用于国外地铁动车车轴及大功率机车车轴的钢种,也是欧洲标准EN 13261规定的高速客车车轴用钢。之前我国的合金钢车轴主要靠进口,为了快速实现国家铁路机车重载技术和提速战略,通过引进、吸收、消化已实现车轴的国产化,许多新型机车都采用了国产的EA4T钢车轴,如9 600 kW牵引机车和武汉、深圳的地铁车辆等。
EA4T车轴钢的常规热处理工艺为调质热处理(淬火+高温回火),根据EN 13261:2009标准要求,调质热处理EA4T钢车轴轴颈1/2半径处的显微组织应全部为马氏体/贝氏体组织(以下简称为M/B组织)。当轴颈直径较小,如180 mm时,采用常规工艺调质热处理后,其1/2半径处可以全部获得M/B组织;但当轴颈直径较大,达到280 mm时,其1/2半径处在常规工艺下获得全部的M/B组织则较为困难[7-8]。在实际生产中为了保证大尺寸车轴淬火加热时心部能够淬透,常常采用提高加热温度(高于铁素体转变为奥氏体的终了温度Ac3 30~50 ℃)的方法进行淬火[9],而回火温度及方式尚需进一步研究。为了确定大尺寸国产EA4T钢车轴的热处理工艺,作者设计了EA4T钢等效车轴的热处理工艺,研究了热处理后等效车轴不同位置的显微组织与性能,据此确定车轴的调质热处理工艺并进行车轴的现场验证。
1. 试样制备与试验方法
试验材料为东北特殊钢集团股份有限公司抚顺特殊钢股份有限公司生产的尺寸280 mm×280 mm×350 mm的热轧退火态EA4T钢车轴毛坯,化学成分如表1所示,符合EN 13261:2009标准要求。在毛坯上加工出规格ϕ280 mm的圆柱体试样,将其作为实际尺寸为ϕ256 mm的EA4T钢车轴的等效车轴,并对其进行调质热处理预试验。
表 1 EA4T钢的化学成分Table 1. Chemical composition of EA4T steel项目 质量分数/% C Si Mn Cr Mo Ni P S V Al Cu Fe 测试值 0.28 0.32 0.70 1.06 0.24 0.17 0.004 0.001 0.04 0.029 0.03 余 标准值 0.22~0.29 0.15~0.40 0.50~0.80 0.90~1.20 0.15~0.30 ≤0.30 ≤0.020 ≤0.015 ≤0.06 ≤0.30 余 根据前期试验结果,EA4T钢的Ac3为840 ℃,在常规条件下其淬火温度应为870~890 ℃。但由于EN 13261:2009标准要求,EA4T钢在淬火时应具有较高的淬透性,而提高奥氏体加热温度可以获得更高的淬透性,故将等效车轴的淬火温度范围设置为890~920 ℃。等效车轴的淬火保温时间可以采用经验公式来估算,公式[10]如下:
(1) 式中:t为保温时间,min;α为加热系数,取值范围为0.9~1.1 min·mm−1;K为加热时的修正系数,取1.2;D为工件的有效厚度,取280 mm。
由式(1)计算得到,等效车轴的淬火保温时间为5~6 h。根据上述分析并结合前期研究[8],确定淬火工艺为900 ℃×5 h。为了确定大尺寸车轴坯的回火工艺,将EA4T钢等效车轴进行900 ℃×5 h水淬处理后,分别进行595,610,650 ℃保温6 h水冷回火处理[8]。
按照EN 13261:2009进行车轴的显微组织及力学性能研究。在不同调质工艺处理后的等效车轴表层、1/2半径处和心部截取金相试样,经打磨、抛光,用体积分数4%硝酸乙醇溶液腐蚀20 s后,用清水冲洗试样,并用乙醇擦拭,再用吹风机吹干,采用NEOPHOT-21型光学显微镜观察显微组织。按照GB/T 228—2002,在车轴表层、1/2半径处和心部位置截取拉伸试样,拉伸试样的尺寸为直径10 mm标准试样尺寸的10倍,在AG-250KNISMO型电子拉压试验机上进行室温拉伸试验,拉伸速度为10 mm·min−1,相同条件下测3次取平均值。按照GB/T 229—2007,在等效车轴表层、1/2半径处和心部分别沿轴向(即横向)和径向(即纵向)截取标准夏比U型冲击试样,在JXB-300型摆锤式冲击试验机上进行室温冲击试验,冲击速度为5 m·s−1,相同条件下测3次取平均值。根据等效车轴测试结果,确定符合标准要求的调质热处理工艺后进行规格ϕ256 mm EA4T钢车轴的现场验证,拉伸试样的尺寸为直径10 mm标准试样尺寸的5倍,冲击试样为5 mm缺口深度的U型冲击试样,测试设备及参数同前。采用Zeiss Supra 55型场发射扫描电镜(SEM)观察拉伸断口形貌。
2. 试验结果与讨论
2.1 调质热处理后等效车轴的组织和性能
由表2可以看出,与EN 13261:2009标准要求的力学性能(屈服强度不低于420 MPa,抗拉强度为650~800 MPa,断后伸长率不低于18%,纵向和横向冲击吸收能量分别不低于50,25 J)相比,等效车轴经900 ℃水淬后,除了595 ℃水冷回火后不同位置的抗拉强度,以及610 ℃水冷回火后表层的抗拉强度偏高之外,其余条件下的强度、断后伸长率、断面收缩率以及纵向与横向冲击韧性均符合要求,同时还存在较大的富裕量。
表 2 等效车轴经900 ℃×5 h水淬和不同温度保温6 h水冷回火后的力学性能Table 2. Mechanical properties of equivalent axle after 900 ℃×5 h water quenching and tempering at different temperatures for 6 h and water cooling回火温度/℃ 位置 屈服强度/MPa 抗拉强度/MPa 断后伸长率/% 断面收缩率/% 冲击吸收能量/J 纵向 横向 595 表层 719.0 866.0 19.0 62.5 156.0 128.0 1/2半径处 603.0 866.0 19.5 68.0 101.0 76.0 心部 694.0 861.0 18.5 62.5 107.0 93.0 610 表层 728.0 843.0 20.5 71.5 129.0 103.0 1/2半径处 628.0 763.0 27.5 65.0 101.0 155.0 心部 543.0 696.0 22.3 65.5 144.0 128.0 650 表层 629.0 781.0 19.0 67.0 141.0 164.0 1/2半径处 628.0 762.0 19.0 72.5 210.0 155.0 心部 595.0 749.0 18.3 66.5 111.0 169.0 由图1可以看出,等效车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火后,除了心部含有少量铁素体外,表层以及1/2半径处的组织基本为回火M/B组织,符合EN 13261:2009对车轴组织的要求。心部与表层、1/2半径处组织差异的原因主要在于冷却速率的不同,心部冷却速率较慢,未发生完全马氏体转变,导致生成少量铁素体,表层和1/2半径处冷却速率较快,形成了回火M/B组织。这种回火M/B组织具有较高的硬度和耐磨性,对车轴的表层性能有积极影响[11-12]。综上,确定EA4T钢车轴的调质热处理工艺为900 ℃×5 h水淬和650 ℃×6 h水冷回火。
2.2 调质热处理工艺的现场验证
在热处理车间采用规格ϕ256 mm的EA4T钢车轴对前文确定的调质热处理工艺(900 ℃×5 h水淬和650 ℃×6 h水冷回火)进行现场验证。由表3可以看出,规格ϕ256 mm的EA4T钢车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火后,不同位置的力学性能均完全满足EN 13261:2009标准要求。由图2可以看出,不同部位的组织均为回火M/B组织,也满足EN 13261:2009标准要求。
位置 屈服强度/MPa 抗拉强度/MPa 断后伸长率/% 断面收缩率/% 冲击吸收能量/J 纵向 横向 表层 653.0 788.0 21.5 70.0 65.3 72.0 1/2半径处 569.0 717.0 21.5 65.0 80.0 71.3 心部 527.0 695.0 20.0 62.0 72.0 73.3 由图3和图4可以看出,车轴不同位置所取的拉伸试样在断裂前均发生了大量的塑性变形,为韧性断裂。宏观断口表现出明显的缩颈,且仅存在表现韧性的纤维区和剪切唇,而不存在表现脆性的放射区。纤维区微观均呈韧窝特征。在拉伸应力的作用下,试样发生颈缩而在最小截面处形成三维应力,其值在轴线方向上最大,这些三维应力使晶界、缺陷等处形成显微孔洞;随着应力的提高,孔洞不断长大且相互连接,同时产生新的孔洞,从而使裂纹缓慢形成并扩展,最终在断口上留下韧窝状的区域。综上所述,国产EA4T钢车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火的调质热处理后,其力学性能和组织均符合EN 13261:2009标准要求。
图 4 经900 ℃×5 h水淬和650 ℃×6 h水冷回火后ϕ256 mm车轴不同位置拉伸试样的断口SEM形貌Figure 4. Fracture SEM morphology of tensile samples in different areas ofϕ256 mm axle after 900 ℃×5 h water quenching and 650 ℃×6 h water cooling tempering: (a) surface layer, overall morphology;(b) surface layer, micromorphology of fiber area;(c) 1/2 radius position, overall morphology;(d) 1/2 radius position, micromorphology of fiber area;(e) core, overall morphology and (f) core, micromorphology of fiber area3. 结论
(1)国产ϕ280 mm EA4T钢等效车轴在进行900 ℃×5 h水淬和595 ℃×6 h水冷回火处理后不同位置以及610 ℃×6 h水冷回火后表层的抗拉强度均偏高,650 ℃×6 h水冷回火后的强度、断后伸长率、断面收缩率以及纵向与横向冲击韧性均符合EN 13261:2009标准要求,组织也基本为回火M/B组织。确定EA4T钢车轴的调质热处理工艺为900 ℃×5 h水淬和650 ℃×6 h水冷回火。
(2)现场验证得到经900 ℃×5 h水淬和650 ℃×6 h水冷回火后,国产ϕ256 mm EA4T钢车轴表层、1/2半径处和心部处的力学性能和显微组织均符合EN 13261:2009标准要求,不同位置取样拉伸后均发生韧性断裂,断口均由纤维区和剪切唇组成,纤维区呈韧窝形貌。
-
表 1 典型中锰钢的化学成分变化
Table 1 Change of chemical composition of typical medium manganese steels
年份 质量分数/% 文献 C Mn Si Cr Al 其他 1988 0.85 6.80 0.94 2.82 [18] 1993 0.94 6.04 0.43 1.57 0.35Mo [6] 2004 1.20 6.20 0.51 [17] 2011 0.10 5.00 2.00 [19] 2012 0.19 4.90 0.004N [20] 2013 0.20 5.00 [21] 2013 0.78 8.12 0.55 1.67 0.42Mo-0.2RE [22] 2014 0.20 5.00 0.50 1.50 0.05V [23] 2015 0.11 6.92 0.11 0.039Nb [24] 2015 0.08 4.94 ≤0.30 ≤0.60 0.54Ni [25] 2015 0.30 6.00 1.50 3.00 [26] 2015 0.40 8.00 2.00 3.00 0.02V [27] 2016 0.85 8.05 0.41 1.63 0.41Mo-0.15V [28] 2016 0.18 10.6 4.1 0.03Nb [29] 2017 0.10 7.00 1.00 0.05 0.003N [30] 2017 0.20 5.05 1.56 0.05 0.003N [31] 2017 0.20 6.00 1.6 [32] 2017 0.47 10.0 2.0 0.7V [5] 2018 0.27 9.10 1.86 3.3Cu [9] 2018 0.18 2.80 0.40 1.40 0.1V [33] 2018 0.46 6.96 2.75 1.86 [34] 2019 0.11 5.04 0.32 [35] 2019 0.13 5.40 0.04 0.017Ti-0.24Ni-0.24Cu-0.032Nb [36] 2019 0.80 8.00 0.70 1.50 0.03Ti-0.25Mo [37] 2019 0.25 4.80 1.67 0.31Mo-0.28V-0.36Ni-0.25Cu [38] 2019 0.23 3.75 1.56 0.32Mo-0.23V-0.4Ni-0.23Cu [38] 2020 0.11 7.10 0.31 [39] 2021 0.20 5.00 0.50 2.50 [40] 2021 0.32 3.65 1.48 0.34Ti-0.24Mo [11] 2021 0.15 5.08 0.99 0.015Ce [14] 2021 0.10 6.00 [41] 2021 0.20 4.98 [42] 2022 0.37 3.25 1.53 0.26 0.43 0.15Mo-0.005Nb [12] 2022 0.09 4.90 0.13 0.07 0.029Ti-0.246Ni-0.26Cu-0.027Nb-0.012N-0.001Ce [43] 2022 0.09 10.3 0.33 0.14 0.35Mo-0.09V [10] 2023 0.27 3.84 0.60 1.60 0.07V-0.03Nb [13] 2023 0.34 8.00 3.40 [44] 2023 0.23 5.00 1.50 0.2Mo-0.23V-0.4Ni-0.2Cu [45] -
[1] GRÄSSEL O ,KRÜGER L ,FROMMEYER G ,et al. High strength Fe-Mn-(Al,Si)TRIP/TWIP steels development-properties-application[J]. International Journal of Plasticity,2000,16(10/11):1391-1409. [2] LEE Y K ,HAN J. Current opinion in medium manganese steel[J]. Materials Science and Technology,2015,31(7):843-856. [3] 罗飞扬,李安运,程明焱,等. 中锰钢在球磨机衬板上的应用[J]. 有色金属科学与工程,2011,2(3):6-8. LUO F Y ,LI A Y ,CHENG M Y ,et al. Applications of medium manganese steel on the ball mill liner[J]. Nonferrous Metals Science and Engineering,2011,2(3):6-8.
[4] 葛世荣,王军祥,王庆良,等. 刮板输送机中锰钢中部槽的自强化抗磨机理及应用[J]. 煤炭学报,2016,41(9):2373-2379. GE S R ,WANG J X ,WANG Q L ,et al. Self-strengthening wear resistant mechanism and application of medium manganese steel applied for the chute of scraper conveyor[J]. Journal of China Coal Society,2016,41(9):2373-2379.
[5] HE B B ,HU B ,YEN H W ,et al. High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science,2017,357(6355):1029-1032. [6] 王明胜,樊维祥. 奥氏体中锰钢的成分设计分析[J]. 机械工程材料,1993,17(1):17-21. WANG M S ,FAN W X ,The composition design of austenitic medium manganese steel[J]. Materials for Mechanical Engineering,1993,17(1):17-21.
[7] 孙荣民中锰钢的微观组织结构及其耐磨性能研究昆明昆明理工大学2012孙荣民. 中锰钢的微观组织结构及其耐磨性能研究[D]. 昆明:昆明理工大学,2012. SUN R MMicrostructure and wear resistance study of medium manganese steelKunmingKunming University of Science and Technology2012SUN R M. Microstructure and wear resistance study of medium manganese steel[D]. Kunming:Kunming University of Science and Technology,2012.
[8] 胡智评Fe-0.2C-7Mn-3Al中锰钢的热处理工艺及强塑化机理研究沈阳东北大学2014胡智评. Fe-0.2C-7Mn-3Al中锰钢的热处理工艺及强塑化机理研究[D]. 沈阳:东北大学,2014. HU Z PStudy on heat treatment process and strengthening-plasticizing mechanism of Fe-0.2C-7Mn-3Al medium manganese steelShenyangNortheastern University2014HU Z P. Study on heat treatment process and strengthening-plasticizing mechanism of Fe-0.2C-7Mn-3Al medium manganese steel[D]. Shenyang:Northeastern University,2014.
[9] 张明赫基于高能X射线的中锰钢组织与力学行为研究北京北京科技大学2019张明赫. 基于高能X射线的中锰钢组织与力学行为研究[D]. 北京:北京科技大学,2019. ZHANG M HHigh-energy X-ray diffraction studies on the microstructure and mechanical behavior of medium-Mn steelsBeijingUniversity of Science and Technology Beijing2019ZHANG M H. High-energy X-ray diffraction studies on the microstructure and mechanical behavior of medium-Mn steels[D]. Beijing:University of Science and Technology Beijing,2019.
[10] 陈义成临界退火对微合金化中锰钢力学性能影响及作用机理秦皇岛燕山大学2022陈义成. 临界退火对微合金化中锰钢力学性能影响及作用机理[D]. 秦皇岛:燕山大学,2022. CHEN Y CEffect of critical annealing on mechanical properties of microalloyed medium manganese steel and its mechanismQinhuangdaoYanshan University2022CHEN Y C. Effect of critical annealing on mechanical properties of microalloyed medium manganese steel and its mechanism[D]. Qinhuangdao:Yanshan University,2022.
[11] 邓杰,宋新莉,孙新军,等. 含钛中锰钢淬火-配分组织及力学性能[J]. 钢铁,2021,56(6):103-111. DENG J ,SONG X L ,SUN X J ,et al. Quenching and partitioning microstructure and mechanical properties of medium manganese steel bearing titanium[J]. Iron & Steel,2021,56(6):103-111.
[12] 赵帅,宋仁伯,张宇,等. 临界退火冷却方式对含铌中锰钢奥氏体稳定性和力学性能的影响[J]. 金属热处理,2022,47(11):20-25. ZHAO S ,SONG R B ,ZHANG Y ,et al. Effect of cooling method of intercritical annealing process on austenite stability and mechanical properties of Nb-containing medium Mn steel[J]. Heat Treatment of Metals,2022,47(11):20-25.
[13] 解承融,董子祥,欧阳玺,等. 临界区退火温度对4%Mn中锰钢组织和力学性能的影响[J/OL]. 热加工工艺.[2023-02-06]. https://kns.cnki.net/kcms/detail//61.1133.TG.20230203.1638.025.html JIE C R ,CHONG Z X ,OUYANG X ,et al. Effects of intercritical annealing temperature on microstructure and mechanical properties of 4%Mn medium-Mn steel[J/OL]. Hot Working Technology.[2023-02-06]. https://kns.cnki.net/kcms/detail//61.1133.TG.20230203.1638.025.html.
[14] 刘宇靖稀土中锰钢ART热处理工艺优化太原太原科技大学2021刘宇靖. 稀土中锰钢ART热处理工艺优化[D]. 太原:太原科技大学,2021. LIU Y JOptimization of ART heat treatment process of rare earth medium manganese steelTaiyuanTaiyuan University of Science and Technology2021LIU Y J. Optimization of ART heat treatment process of rare earth medium manganese steel[D]. Taiyuan:Taiyuan University of Science and Technology,2021.
[15] 于化顺,李秀真,刘志强,等. 高碳中锰耐磨钢的组织与性能[J]. 铸造,1996(4):18-21. YU H S ,LI X Z ,LIU Z Q ,et al. Microstructure and properties of high carbon wera-resistant steel with medium manganese content[J]. China Foundry,1996(4):18-21.
[16] 朱代康,胡建中. 稀土中锰钢球磨机衬板耐磨性研究[J]. 贵州工学院学报,1985,(4):43-50. ZHU D K ,HU J Z. The research into abrasion of the liner of mills with the rare-earth middle-manganese steel[J]. Journal of Guizhou University of Technology,1985,(4):43-50.
[17] 张明,陈晓军,刘凤君,等. 变质中锰耐磨钢的性能与应用[J]. 机械工程材料,2004,28(1):38-40. ZHANG M ,CHEN X J ,LIU F J ,et al. Properties and application of modified medium manganese wear resistant steel[J]. Materials for Mechanical Engineering,2004,28(1):38-40.
[18] 孔宪武,董汉君,金丽霞,等. 中锰钢磨粒磨损试验研究[J]. 兵器材料科学与工程,1988(9):16-23. KONG X W ,DONG H J ,JIN L X ,et al. Experimental study on sbrasive wear of medium manganese steel[J]. Ordnance Material Science and Engineering,1988(9):16-23.
[19] HANAMURA T ,TORIZUKA S ,SUNAHARA A ,et al. Excellent total mechanical-properties-balance of 5% Mn,30 000 MPa% steel[J]. ISIJ International,2011,51(4):685-687. [20] 孙荣民,徐文欢,王存宇,等. 新型中锰马氏体高强度钢的耐磨性能[J]. 钢铁,2012,47(12):64-70. SUN R M ,XU W H ,WANG C Y ,et al. Wear resistant of new type medium manganese high strength martensite steel[J]. Iron & Steel,2012,47(12):64-70.
[21] WANG C ,CAO W Q ,SHI J ,et al. Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel[J]. Materials Science and Engineering:A,2013,562:89-95. [22] 田浩亮,刘云峰,张平,等. 合金化奥氏体中锰钢的研发与耐磨性能[J]. 金属热处理,2013,38(2):30-34. TIAN H L ,LIU Y F ,ZHANG P ,et al. Research and development of alloyed austenite medium manganese steel and its impact abrasive wear resistance[J]. Heat Treatment of Metals,2013,38(2):30-34.
[23] 田超Fe-0.2C-5Mn-1.5Al中锰钢的奥氏体稳定性调控及组织性能研究沈阳东北大学2014田超. Fe-0.2C-5Mn-1.5Al中锰钢的奥氏体稳定性调控及组织性能研究[D]. 沈阳:东北大学,2014. TIAN CStudy on the regulation of austenite stability and the microstructure and properties of Fe-0.2C-5Mn-1.5Al medium manganese steelShenyangNortheastern University2014TIAN C. Study on the regulation of austenite stability and the microstructure and properties of Fe-0.2C-5Mn-1.5Al medium manganese steel[D]. Shenyang:Northeastern University,2014.
[24] 董瑞中锰钢组织演变规律与相变诱导塑性行为北京北京科技大学2015董瑞. 中锰钢组织演变规律与相变诱导塑性行为[D]. 北京:北京科技大学,2015. DONG RMicrostructure evolution and transformation induced plasticity behavior of medium manganese steelBeijingUniversity of Science and Technology Beijing2015DONG R. Microstructure evolution and transformation induced plasticity behavior of medium manganese steel[D]. Beijing:University of Science and Technology Beijing,2015.
[25] 赵连瑞中锰高强高韧钢组织与性能的研究沈阳东北大学2015赵连瑞. 中锰高强高韧钢组织与性能的研究[D]. 沈阳:东北大学,2015. ZHAO L RResearch on microstructure and properties of medium manganese steel with high strength and high ductilityShenyangNortheastern University2015ZHAO L R. Research on microstructure and properties of medium manganese steel with high strength and high ductility[D]. Shenyang:Northeastern University,2015.
[26] LEE S ,LEE K ,DE COOMAN B C. Observation of the TWIP+TRIP plasticity-enhancement mechanism in Al-added 6WtPct medium Mn steel[J]. Metallurgical and Materials Transactions A,2015,46(6):2356-2363. [27] LEE S ,DE COOMAN B C. Tensile behavior of intercritically annealed ultra-fine grained 8% Mn multi-phase steel[J]. Steel Research International,2015,86(10):1170-1178. [28] 李勇,王斐,崔文,等. 奥氏体中锰钢的冲滚磨料磨损性能研究[J]. 润滑与密封,2016,41(5):43-47. LI Y ,WANG F ,CUI W ,et al. Research on the impact and rolling abrasive wear properties of austenitic medium manganese steel[J]. Lubrication Engineering,2016,41(5):43-47.
[29] CAI Z H ,DING H ,KAMOUTSI H ,et al. Interplay between deformation behavior and mechanical properties of intercritically annealed and tempered medium-manganese transformation-induced plasticity steel[J]. Materials Science and Engineering:A,2016,654:359-367. [30] 韩仃停临界区退火工艺对Mn-Si系中锰钢组织性能的影响沈阳东北大学2017韩仃停. 临界区退火工艺对Mn-Si系中锰钢组织性能的影响[D]. 沈阳:东北大学,2017. HAN D TEffect of intercritical annealing process on microstructure and mechanical properties of Mn-Si type medium-Mn steelShenyangNortheastern University2017HAN D T. Effect of intercritical annealing process on microstructure and mechanical properties of Mn-Si type medium-Mn steel[D]. Shenyang:Northeastern University,2017.
[31] 陈树青ART退火中锰钢组织演变及力学性能调控沈阳东北大学2018陈树青. ART退火中锰钢组织演变及力学性能调控[D]. 沈阳:东北大学,2018. CHEN S QControl of microstructure evolution and mechanical properties of ART-annealed medium manganese steelShenyangNortheastern University2018CHEN S Q. Control of microstructure evolution and mechanical properties of ART-annealed medium manganese steel[D]. Shenyang:Northeastern University,2018.
[32] LI Z C ,DING H ,MISRA R D K ,et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands[J]. Materials Science and Engineering:A,2017,679:230-239. [33] 胡智评高性能中锰钢的形变热处理工艺及组织性能研究沈阳东北大学2018胡智评. 高性能中锰钢的形变热处理工艺及组织性能研究[D]. 沈阳:东北大学,2018. HU Z PStudy on thermal-mechanical process and microstructure-properties in medium manganese steel with high performanceShenyangNortheastern University2018HU Z P. Study on thermal-mechanical process and microstructure-properties in medium manganese steel with high performance[D]. Shenyang:Northeastern University,2018.
[34] 侯道远薄带连铸中锰钢组织演变与力学性能研究沈阳东北大学2019侯道远. 薄带连铸中锰钢组织演变与力学性能研究[D]. 沈阳:东北大学,2019. HOU D YStudy on microstructure evolution and mechanical properties of strip-casting medium manganese steelShenyangNortheastern University2019HOU D Y. Study on microstructure evolution and mechanical properties of strip-casting medium manganese steel[D]. Shenyang:Northeastern University,2019.
[35] 黎旺中锰钢奥氏体逆相变行为及其组织性能研究唐山华北理工大学2019黎旺. 中锰钢奥氏体逆相变行为及其组织性能研究[D]. 唐山:华北理工大学,2019. LI WStudy on austenite reversed transformation behavior and microstructure and properties of medium manganese steelTangshanNorth China University of Science and Technology2019LI W. Study on austenite reversed transformation behavior and microstructure and properties of medium manganese steel[D]. Tangshan:North China University of Science and Technology,2019.
[36] 赵棪逆相变退火工艺对5%Mn中锰钢组织性能的影响呼和浩特内蒙古工业大学2019赵棪. 逆相变退火工艺对5%Mn中锰钢组织性能的影响[D]. 呼和浩特:内蒙古工业大学,2019. ZHAO YEffect of ART on microstructure and properties of 5% Mn medium manganese steelHohhotInner Mongolia University of Tehchnology2019ZHAO Y. Effect of ART on microstructure and properties of 5% Mn medium manganese steel[D]. Hohhot:Inner Mongolia University of Tehchnology,2019.
[37] 朱彪热轧Mn8、Mn15和Mn18耐磨钢的磨损与腐蚀性能研究徐州中国矿业大学2019朱彪. 热轧Mn8、Mn15和Mn18耐磨钢的磨损与腐蚀性能研究[D]. 徐州:中国矿业大学,2019. ZHU BStudy on wear and corrosion of hot rolled Mn8,Mn15 and Mn18 wear-resistant steelXuzhouChina University of Mining and Technology2019ZHU B. Study on wear and corrosion of hot rolled Mn8,Mn15 and Mn18 wear-resistant steel[D]. Xuzhou:China University of Mining and Technology,2019.
[38] 米俊龙,贾涓,李建,等. Mn含量对中锰钢Q&P工艺组织及性能的影响[J]. 材料热处理学报,2019,40(12):106-111. MI J L ,JIA J ,LI J ,et al. Effect of Mn content on microstructure and properties of medium manganese steel treated by Q & P process[J]. Transactions of Materials and Heat Treatment,2019,40(12):106-111.
[39] 崔海军,王春风,桑振远,等. 退火对汽车用0.1C-7Mn-0.3Si中锰钢组织与力学性能的影响[J]. 热加工工艺,2020,49(18):135-137. CUI H J ,WANG C F ,SANG Z Y ,et al. Effects of annealing on microstructure and mechanical properties of 0.1C-7Mn-0.3Si medium manganese steel for automobile[J]. Hot Working Technology,2020,49(18):135-137.
[40] 张楠Al微合金化中锰钢力学性能研究及退火前原始组织控制包头内蒙古科技大学2021张楠. Al微合金化中锰钢力学性能研究及退火前原始组织控制[D]. 包头:内蒙古科技大学,2021. ZHANG NStudy on mechanical properties and control of original structure before annealing of Al microalloyed medium manganese steelBaotouInner Mongolia University of Science & Technology2021ZHANG N. Study on mechanical properties and control of original structure before annealing of Al microalloyed medium manganese steel[D]. Baotou:Inner Mongolia University of Science & Technology,2021.
[41] 邓素怀,王全礼,张慧峰,等. 回火温度对中锰钎杆钢微观组织和力学性能的影响[J]. 中国冶金,2021,31(11):16-20. DENG S H ,WANG Q L ,ZHANG H F ,et al. Effect of tempering temperature on microstructure and mechanical properties of medium manganese drill rod steel[J]. China Metallurgy,2021,31(11):16-20.
[42] 孙荣民,李国阳,王辉,等. 逆相变退火处理Fe-Mn-C中锰钢的组织与性能[J]. 钢铁,2021,56(6):82-88. SUN R M ,LI G Y ,WANG H ,et al. Microstructure and properties of Fe-Mn-C medium-Mn steel processed by ART-annealing[J]. Iron & Steel,2021,56(6):82-88.
[43] 赵庆波稀土微合金化低成本第三代汽车钢退火工艺研究呼和浩特内蒙古工业大学2022赵庆波. 稀土微合金化低成本第三代汽车钢退火工艺研究[D]. 呼和浩特:内蒙古工业大学,2022. ZHAO Q BResearch on annealing process of low cost third generation automobile steel by rare earth microalloyingHohhotInner Mongolia University of Tehchnology2022ZHAO Q B. Research on annealing process of low cost third generation automobile steel by rare earth microalloying[D]. Hohhot:Inner Mongolia University of Tehchnology,2022.
[44] 朱延山,罗咪,曲锦波. Mn含量对含铝中锰钢相变温度和显微组织的影响[J]. 材料工程,2023,51(6):131-138. ZHU Y S ,LUO M ,QU J B. Effect of Mn content on phase transition temperature and microstructure of Al-contained medium manganese steels[J]. Journal of materials engineering,2023,51(6):131-138.
[45] 贾涓,江萱,蒋建江,等. 淬火配分时间对一种中锰钢耐磨性的影响[J]. 金属热处理,2023,48(5):270-274. JIA J ,JIANG X ,JIANG J J ,et al. Effect of quenching-partition time on wear resistance of a medium manganese steel[J]. Heat Treatment of Metals,2023,48(5):270-274.
[46] 厚汝军,吕博,张福成,等. 钨对中锰奥氏体钢耐磨性的影响[J]. 物理测试,2008,26(4):6-9. HOU R J ,LYU B ,ZHANG F C ,et al. Effect of W on wear resistance of medium manganese austenitic steel[J]. Physics Examination and Testing,2008,26(4):6-9.
[47] 谢敬佩,何镇明,姜启川. 铌、氮和稀土元素对中锰钢的影响[J]. 矿山机械,1992(9):27-30. XIE J P ,HE Z M ,JIANG Q C. Influence of Nb,N,and rare-earth elements on medium manganese steel[J]. Mining & Processing Equipment,1992(9):27-30.
[48] LEE S ,LEE S J ,DE COOMAN B C. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning[J]. Scripta Materialia,2011,65(3):225-228. [49] 尉金奎. 中锰钢在中、低冲击工作条件下的开发与应用[D]. 阜新:辽宁工程技术大学,2004. WEI J K. The development and the application of the medium manganese steel under medium or low impact[J]. Fuxin:Liaoning Technical University,2004.
[50] 黄龙低碳中锰钢热处理过程中的组织性能控制沈阳东北大学2015黄龙. 低碳中锰钢热处理过程中的组织性能控制[D]. 沈阳:东北大学,2015. HUANG LThe evolution of microstructure and mechanical properties during heat treatment of low carbon medium manganese steelShenyangNortheastern University2015HUANG L. The evolution of microstructure and mechanical properties during heat treatment of low carbon medium manganese steel[D]. Shenyang:Northeastern University,2015.
[51] 邹英,刘华赛,韩赟,等. 基于退火路径的中锰钢组织转变与力学性能[J]. 钢铁,2022,57(4):97-104. ZOU Y ,LIU H S ,HAN Y ,et al. Microstructure evolution and mechanical properties of medium manganese steel based on annealing path[J]. Iron & Steel,2022,57(4):97-104.
[52] 伍怡,李绪业,彭宽,等. 中锰铸钢的亚温等温处理研究[J]. 铸造技术,1990(3):22-23. WU Y ,LI X Y ,PENG K ,et al. The incestigation of the intercritical isothermal heat treatment for the cast steels with medium-manganese[J]. Foundry Technology,1990(3):22-23.
[53] 郭居魁改性中锰钢耐磨衬板的制造工艺及材料性能研究太原太原科技大学2014郭居魁. 改性中锰钢耐磨衬板的制造工艺及材料性能研究[D]. 太原:太原科技大学,2014. GUO J KResearch on manufacturing process and material properties of modified medium manganese steel wear-resistant linerTaiyuanTaiyuan University of Science and Technology2014GUO J K. Research on manufacturing process and material properties of modified medium manganese steel wear-resistant liner[D]. Taiyuan:Taiyuan University of Science and Technology,2014.
[54] 孔君华,陈大凯. 中锰奥氏体基耐磨钢的热处理工艺及性能研究[J]. 理化检测-物理分册,1999,35(10):453-457. KONG J H ,CHEN D K. Study on heat treatment and property of medium-Mn wear-resistant austenitic steel[J]. Physical Testing and Chemical Analysis Part A:Physical Testing,1999,35(10):453-457.
[55] 阳锋高强塑积中锰钢组织调控与变形特征研究北京钢铁研究总院2018阳锋. 高强塑积中锰钢组织调控与变形特征研究[D]. 北京:钢铁研究总院,2018. YANG FStudy on microstructure control and deformation chracteristics of medium Mn steel with high product of tensile strength and ductilityBeijingCentral Iron & Steel Research Institute2018YANG F. Study on microstructure control and deformation chracteristics of medium Mn steel with high product of tensile strength and ductility[D]. Beijing:Central Iron & Steel Research Institute,2018.
[56] 李绍雄,何镇明,施忠良,等. 奥氏体中锰钢多元合金化对耐磨性的影响[J]. 铸造,1989(8):4-7. LI S X ,HE Z M ,SHI Z L ,et al. The effects of multi-compnoent alloying of austenitic mid-manganese steel on the abrasion resistance[J]. Foundry,1989(8):4-7.
[57] 许振明,姜启川,蔡英文,等. 新型团球状共晶体奥氏体贝氏体钢及其抗冲击磨料磨损特性[J]. 钢铁,1998,33(3):46-50. XU Z M ,JIANG Q C ,CAI Y W ,et al. New austenite-bainite steel with nodular eutectics and its impact abrasive wear resistance[J]. Iron & Steel,1998,33(3):46-50.
[58] 付贵,吴安成,李克天. 耐磨机械设备用耐磨钢磨料磨损性能的研究[J]. 热加工工艺,2019,48(8):70-72. FU G ,WU A C ,LI K T. Research on abrasive wear properties of wear-resistant steels for wear-resisting machinery[J]. Hot Working Technology,2019,48(8):70-72.
[59] 王宇回,袁晓明,张宇,等. 热轧中锰钢的磨损性能及应用[J]. 矿山机械,2019,47(6):50-54. WANG Y H ,YUAN X M ,ZHANG Y ,et al. Wear properties and application of hot-rolled medium manganese steel[J]. Mining & Processing Equipment,2019,47(6):50-54.
[60] XU Z M. Eutectic growth in as-cast medium manganese steel[J]. Materials Science and Engineering:A,2002,335(1/2):109-115. [61] 汪健刮板输送机用中锰钢的摩擦腐蚀行为研究徐州中国矿业大学2018汪健. 刮板输送机用中锰钢的摩擦腐蚀行为研究[D]. 徐州:中国矿业大学,2018. WANG JStudy on friction and corrosion behavior of medium manganese steel for scraper conveyorXuzhouChina University of Mining and Technology2018WANG J. Study on friction and corrosion behavior of medium manganese steel for scraper conveyor[D]. Xuzhou:China University of Mining and Technology,2018.
[62] 陈辉,赵冬,王庆良,等. 奥氏体中锰钢的磨料磨损性能[J]. 金属热处理,2017,42(4):42-46. CHEN H ,ZHAO D ,WANG Q L ,et al. Abrasive wear properties of medium manganese austenitic steel[J]. Heat Treatment of Metals,2017,42(4):42-46.
[63] 陈辉形变诱导硬化型奥氏体中锰钢的磨损性能及强化机理研究徐州中国矿业大学2016陈辉. 形变诱导硬化型奥氏体中锰钢的磨损性能及强化机理研究[D]. 徐州:中国矿业大学,2016. CHEN HStudy on wear properties and strengthening mechanism of hardening medium manganese austenitic steel induced by deformationXuzhouChina University of Mining and Technology2016CHEN H. Study on wear properties and strengthening mechanism of hardening medium manganese austenitic steel induced by deformation[D]. Xuzhou:China University of Mining and Technology,2016.
[64] 隋金玲,朱瑞富,魏涛,等. 变质对中锰钢组织与性能的影响[J]. 金属热处理,1996(1):31-33. SUI J L ,ZHU R F ,WEI T ,et al. Effect of modification on microstructures and properties of medium manganese steel[J]. Heat Treatment of Metals,1996(1):31-33.
[65] 荆天辅,郑炀曾,曹为群. 胞状碳硼化物对中锰钢耐磨性的影响[J]. 钢铁研究学报,1992(4):48-52. JING T F ,ZHENG Y Z ,CAO W Q. Effect of cell-type carboborides on wear resistance of Fe-Mn-C steels[J]. Journal of Iron and Steel Research,1992(4):48-52.
[66] HE Z M ,JIANG Q C ,FU S B ,et al. Improved work-hardening ability and wear resistance of austenitic manganese steel under non-severe impact-loading conditions[J]. Wear,1987,120(3):305-319.