• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

烧结温度和铌、锰掺杂量对钛酸铅钡基高居里点PTC陶瓷阻温特性的影响

莫志伟, 王焕平, 李登豪, 林孝杰, 马红萍, 高照, 蒋宗恒, 徐时清

莫志伟, 王焕平, 李登豪, 林孝杰, 马红萍, 高照, 蒋宗恒, 徐时清. 烧结温度和铌、锰掺杂量对钛酸铅钡基高居里点PTC陶瓷阻温特性的影响[J]. 机械工程材料, 2025, 49(3): 29-35. DOI: 10.11973/jxgccl230591
引用本文: 莫志伟, 王焕平, 李登豪, 林孝杰, 马红萍, 高照, 蒋宗恒, 徐时清. 烧结温度和铌、锰掺杂量对钛酸铅钡基高居里点PTC陶瓷阻温特性的影响[J]. 机械工程材料, 2025, 49(3): 29-35. DOI: 10.11973/jxgccl230591
MO Zhiwei, WANG Huanping, LI Denghao, LIN Xiaojie, MA Hongping, GAO Zhao, JIANG Zongheng, XU Shiqing. Effect of Sintering Temperature and Nb, Mn Doping Amount on Temperature Resistance Characteristics of Lead Barium Titanate Based High Curie Point PTC Ceramics[J]. Materials and Mechanical Engineering, 2025, 49(3): 29-35. DOI: 10.11973/jxgccl230591
Citation: MO Zhiwei, WANG Huanping, LI Denghao, LIN Xiaojie, MA Hongping, GAO Zhao, JIANG Zongheng, XU Shiqing. Effect of Sintering Temperature and Nb, Mn Doping Amount on Temperature Resistance Characteristics of Lead Barium Titanate Based High Curie Point PTC Ceramics[J]. Materials and Mechanical Engineering, 2025, 49(3): 29-35. DOI: 10.11973/jxgccl230591

烧结温度和铌、锰掺杂量对钛酸铅钡基高居里点PTC陶瓷阻温特性的影响

基金项目: 

浙江省科技计划资助项目 2023C01090

详细信息
    作者简介:

    莫志伟(1999—),男,湖南邵阳人,硕士研究生

    通讯作者:

    王焕平教授

  • 中图分类号: TN373

Effect of Sintering Temperature and Nb, Mn Doping Amount on Temperature Resistance Characteristics of Lead Barium Titanate Based High Curie Point PTC Ceramics

  • 摘要:

    向钛酸钡陶瓷中掺入铅、锶、钙、铌、锰后,采用固相反应法制备了铌、锰共掺钛酸铅钡基高居里点正温度系数(PTC)陶瓷,研究了不同烧结温度(1 250~1 310 ℃)下铌、锰的复合掺杂(物质的量分数分别为0.002 0~0.003 0,0.000 8~0.002 5)对陶瓷微观结构、体积密度和阻温特性的影响。结果表明:随着烧结温度的升高,掺杂不同物质的量分数锰或铌的陶瓷的体积密度均先升后降,当烧结温度在1 290 ℃,体积密度均最大,结构均为纯钙钛矿结构。当烧结温度为1 290 ℃时,随着锰掺杂量的增加,陶瓷的体积密度先升后降,晶粒尺寸增加,室温电阻率增大,升阻比和温度系数基本呈先增后减的趋势,居里温度稳定为271~280 ℃;随着铌掺杂量的增加,陶瓷的体积密度先增后减,晶粒尺寸减小,升阻比和温度系数先增大后减小,室温电阻率先减小后增大,居里温度稳定在270~281 ℃。当烧结温度为1 290 ℃,掺杂锰和铌的物质的量分数分别为0.001 0,0.002 4时,陶瓷的阻温特性最佳,升阻比和温度系数最大,分别为7.011×103和20.19%,室温电阻率为2.13×103 Ω·cm,居里温度为281 ℃,此时晶粒尺寸均匀,体积密度最大。

    Abstract:

    The Nb-Mn Co-doped lead barium titanate based high Curie point positive temperature coefficient (PTC) ceramics were prepared by solid state reaction after adding lead, strontium, calcium, niobium and manganese into barium titanate ceramics. The effects of the composite doping of Nb and Mn (molar fraction of 0.002 0–0.003 0, 0.000 8–0.002 5, respectively) on the microstructure, bulk density and temperature resistance characteristics of the ceramics under different sintering temperatures (125 0–131 0 ℃) were studied. The results show that the bulk densities of ceramics doped with different molar fractions of Mn or Nb first increased and then decreased with the increase of sintering temperature. When the sintering temperature was 1 290 ℃, the bulk densities were the largest, and their structures were all pure chalcocite structures. When the sintering temperature was 1 290 ℃, with the increase of Mn doping amount, the bulk density of the ceramics first increased and then decreased, the grain size increased, the room temperature resistivity increased, the lift-off resistance ratio and the temperature coefficient basically first increased and then decreased, and the Curie temperature was stabilized at 271–280 ℃. With the increase of Nb doping amount, the bulk density of the ceramics first increased and then decreased, the grain size decreased, the lift-off resistance ratio and temperature coefficient first increased and then decreased, the room temperature resistivity first decreased and then increased, and the Curie temperature was stabilized at 270–281 ℃. When the sintering temperature was 1 290 ℃, the molar fractions of doped Mn and Nb were 0.001 0, 0.002 4, respectively, the temperature resistance characteristics of the ceramics were the best; the lift-off resistance ratio and temperature coefficient were the largest, which were 7.011×103 and 20.19%, respectively, the room-temperature resistivity was 2.13×103 Ω·cm, and the Curie temperature was 281 ℃. The excellent temperature resistance was ascribed to the uniform the grain size and the largest bulk density.

  • 钛酸钡(BaTiO3)陶瓷是一种具有代表性的绝缘体铁电材料,其晶格结构为典型的钙钛矿结构[1-2],当向BaTiO3陶瓷中掺入稀土元素时,BaTiO3晶体会发生AB位离子取代,发生半导化,这种掺杂得到的BaTiO3基半导体陶瓷的电阻随着温度升高而增大,呈现正温度系数(positive temperature coefficient,PTC)效应[3-5]。具有良好阻温特性的BaTiO3基PTC陶瓷由于具有恒温加热、制作成本低、发热效率快等优点而被广泛应用于新能源电动汽车空调以及电池加热元件上[6-8]。在许多电子和电力设备中,工作环境温度可能超过200 ℃。如果PTC陶瓷的居里温度过低,在高温下将无法继续发挥有效的PTC效应,从而影响设备的正常运行[9]。由于铅具有较大的离子半径,掺杂铅可以改变BaTiO3基陶瓷的晶格参数,进而提高材料的铁电相-顺电相转变温度(即居里温度)。此外,铅的掺杂还可以稳定材料的晶相,提高材料的高温性能[10-11]。目前,钛酸铅钡基PTC陶瓷因其较高的居里温度(约250 ℃至300 ℃)逐渐成为高温应用领域中的重要材料[12]

    新能源汽车的蓬勃发展对PTC陶瓷的电学性能提出了更高的要求,为此国内外学者致力于研究掺杂和烧结工艺对其性能的改善作用[13-15]。适量的钙元素掺杂可以有效改善陶瓷晶粒尺寸,提高陶瓷的耐压性能[16]。雷佳[17]提出,适量的锶元素掺杂可以提高陶瓷的PTC性能。CHENG等[18]通过向BaTiO3中掺杂施主杂质铌以及改变烧结工艺,制备出了室温电阻只有0.14 Ω、升阻比大于103的低阻PTC陶瓷。受主杂质锰的掺杂可以有效提高陶瓷的PTC效应[19]。DING等[20]通过改变锰含量、优化烧结温度和保温时间,制备出了室温电阻只有14 Ω、升阻比达到105、温度系数约为22%的高性能PTC陶瓷。然而,有关铌-锰共掺钛酸铅钡基高居里点PTC陶瓷的研究较少。为此,作者通过向BaTiO3陶瓷中掺入铅、锶、钙、铌、锰来制备钛酸铅钡基高居里点PTC陶瓷,研究了不同烧结温度下铌、锰的复合掺杂对陶瓷微观结构、体积密度和阻温特性的影响,以期为提升陶瓷的PTC效应和高温稳定性提供试验参考。

    试验原料包括BaCO3粉末(阿拉丁公司提供,纯度99.95%)、Pb3O4粉末(阿拉丁公司提供,纯度98%)、TiO2粉末(阿拉丁公司提供,纯度99.8%)、Nb2O5粉末(阿拉丁公司提供,纯度99.99%)、MnCO3粉末(阿拉丁公司提供,纯度99.95%)、CaCO3粉末(天津市光复精细化工研究所提供,纯度99.99%)、SrCO3粉末(阿拉丁公司提供,纯度99.99%)、SiO2粉末(阿拉丁公司提供,纯度99.99%)、聚乙烯醇(PVA)溶液(质量分数6%)、无水乙醇和银浆SA-5120(武汉硕美特提供)。采用固相反应法制备陶瓷,按照Ba0.976 6Ca0.021 2Sr0.002 2Ti1–xyMnxNbyO3与PbTiO3物质的量比(0.66∶0.34)分别称取原料,其中,x为锰的物质的量分数,取0.000 5,0.000 8,0.001 0,0.001 5,0.002 0,0.002 5,y为铌的物质的量分数,取0.002 0,0.002 2,0.002 4,0.002 6,0.002 8,0.003 0。将配好的各原料倒进氧化锆球磨罐中,加入无水乙醇后在QM-QX1L型全方位行星球磨机中湿法球磨4 h,放入90 ℃烘箱中干燥6 h,再分别在1 050 ℃与950 ℃的马弗炉中煅烧2 h;将煅烧后的各原料混合并加入烧结助剂SiO2,二次球磨1 h,然后加入适量PVA溶液,混合均匀后在300 MPa压力下压制成圆片;将圆片置于马弗炉中进行排胶,然后分别在1 250,1 270,1 290,1 310 ℃保温30 min烧结,再降温至1 100 ℃保温2 h,随炉冷却到室温。

    采用D2 PHASER型X射线衍射仪(XRD)对陶瓷的物相组成进行分析,采用铜靶,Kα射线,扫描范围为10°~60°。使用阿基米德法对陶瓷的体积密度进行测试。使用SU 8010型场发射扫描电子显微镜(SEM)对陶瓷断面的微观形貌进行表征。先将陶瓷片表面抛光打磨,然后涂上SA-5120型欧姆银浆,在550 ℃下保温30 min,完成电极烧结;使用WRT-II型电阻温度特性测定仪对两面涂覆电极的陶瓷进行阻温特性测试,测试电压为9 V,升温速率为2 ℃·min−1

    图1可知,当烧结温度由1 250 ℃升高到1 310 ℃时,掺杂不同物质的量分数锰的陶瓷的体积密度均呈先升后降的趋势。当烧结温度为1 250 ℃时,陶瓷未烧结完全,陶瓷晶粒生长不均匀,未达到良好的致密化,陶瓷的体积密度较低;随着烧结温度的升高,陶瓷逐渐致密化,体积密度增大;但是当烧结温度超过1 290 ℃时,陶瓷出现过烧现象,导致致密性变差。当烧结温度为1 290 ℃时,陶瓷的体积密度最高,因此后面研究锰掺杂对陶瓷性能影响时,烧结温度设定为1 290 ℃。固定铌的物质的量分数为0.002 8,在1 290 ℃烧结温度下随着锰掺杂量的增加,陶瓷的体积密度先升后降,当掺杂锰的物质的量分数为0.001 0时,陶瓷的体积密度最大,为5.845 g·cm−3

    图  1  掺杂不同物质的量分数锰陶瓷的体积密度随烧结温度的变化曲线(铌物质的量分数为0.002 8)
    Figure  1.  Curves of volume density vs sintering temperature of ceramics doped with different molar fractions of Mn (Nb molar fraction of 0.002 8)

    图2可知:掺杂不同物质的量分数锰的陶瓷的XRD谱与四方相BaTiO3相似,说明所有陶瓷均为纯钙钛矿结构,未出现二次非钙钛矿相;随着锰掺杂量的增加,陶瓷的主晶相峰并未出现明显偏移,这是由于锰的离子半径(0.066 nm)与钛(0.068 nm)接近,当锰进入晶格时,优先取代钛。

    图  2  1 290 ℃烧结温度下掺杂不同物质的量分数锰陶瓷的XRD谱(铌物质的量分数为0.002 8)
    Figure  2.  XRD patterns of ceramics doped with different molar fractions of Mn under sintering temperature of 1 290 ℃ (Nb molar fraction of 0.002 8)

    图3可以看出:当掺杂锰的物质的量分数为0.000 5,0.000 8时,陶瓷晶粒生长不均匀,气孔较多;随着锰掺杂量的增加,陶瓷晶粒尺寸逐渐增大,当掺杂锰的物质的量分数增加到0.001 0时,陶瓷的致密性最好,晶粒较饱和,晶粒尺寸均匀;当掺杂锰的物质的量分数达到0.002 0和0.002 5时,晶粒尺寸过大,同时陶瓷中出现较大气孔,致密性较差。可知,锰的掺杂有效促进了陶瓷晶粒的生长,这归因于锰掺杂使得氧空位增多,有利于烧结过程中传质的进行,从而增加了晶粒生长的驱动力[21]

    图  3  1 290 ℃烧结温度下掺杂不同物质的量分数锰陶瓷的断面SEM形貌(铌物质的量分数为0.002 8)
    Figure  3.  SEM morphology of ceramic sections doped with different molar fractions of Mn under sintering temperature of 1 290 ℃ (Nb molar fraction of 0.002 8)

    表1可以看出:随着锰掺杂量的增加,陶瓷的室温电阻率增大,这是因为在烧结时,偏析晶界处的受主杂质锰会增大陶瓷的晶界电阻率;随着锰掺杂量的增加,陶瓷的升阻比(最大电阻率与最小电阻率的比值)和温度系数(居里点后电阻率随温度变化的相对变化程度)基本呈先增后减的趋势,居里温度稳定为271~280 ℃。当掺杂锰的物质的量分数为0.001 0时,升阻比最大,陶瓷的PTC效应最好,此时陶瓷具有较高的居里温度(276 ℃)和温度系数(18.14%)。根据Heywang-Jonker[22-23]模型,PTC效应主要由陶瓷的晶界引起:随着锰掺杂量的增加,陶瓷晶界处锰离子大量富集,对施主杂质(铌)的电子进行补偿,晶界处的自由电子浓度下降,从而导致晶界电阻增加,陶瓷的电阻率快速增加,升阻比提升,因此PTC效应提高。但是,当掺杂锰物质的量分数超过0.001 0时,更多的锰离子进入晶粒内,晶界电阻减小,对晶粒生长的抑制作用减弱,晶粒明显长大,晶粒内部电阻占据主导,PTC效应不再主要由晶界变化引起。这时陶瓷的电阻率在低温和高温之间的变化幅度降低,升阻比随锰掺杂量的增加而降低并趋于稳定。

    表  1  1 290 ℃烧结温度下掺杂不同物质的量分数锰陶瓷的阻温特性参数(铌物质的量分数为0.002 8)
    Table  1.  Resistance temperature characteristic parameters of ceramics doped with different molar fractions of Mn under sintering temperature of 1 290 ℃ (Nb molar fraction of 0.002 8)
    锰物质的量分数室温电阻/Ω室温电阻率/(Ω·cm)升阻比居里温度/℃温度系数/%
    0.000 53298.73×1031.521×1022726.12
    0.000 83891.03×1042.714×1022718.71
    0.001 04001.14×1042.917×10327618.14
    0.001 51 3003.45×1041.050×10328015.87
    0.002 01 8186.82×1041.128×10327713.51
    0.002 5 55 0002.06×1061.054×10327612.94
    下载: 导出CSV 
    | 显示表格

    图4可知,当烧结温度由1 250 ℃升高到1 310 ℃时,不同铌掺杂量陶瓷的体积密度均呈先升后降的趋势。随着烧结温度的升高,陶瓷逐渐致密化,体积密度增大;但是当烧结温度超过1 290 ℃时,陶瓷出现过烧现象,导致致密性变差,体积密度降低。当烧结温度为1 290 ℃时,不同铌掺杂量陶瓷的体积密度均最大,因此后面研究铌掺杂对陶瓷性能影响时,烧结温度设定为1 290 ℃。固定掺杂锰的物质的量分数为0.001 0,在烧结温度1 290 ℃下随着铌掺杂量的增加,陶瓷的体积密度先增后减,当掺杂铌的物质的量分数为0.002 4时,陶瓷的体积密度最大,为5.882 g·cm−3

    图  4  掺杂不同物质的量分数铌的陶瓷的体积密度随烧结温度的变化曲线(锰物质的量分数为0.001 0)
    Figure  4.  Curves of volume density vs sintering temperature of ceramics doped with different molar fractions of Nb (Mn molar fraction of 0.001 0)

    图5可以看出:1 290 ℃烧结温度下不同铌掺杂量陶瓷均显示出单一的BaTiO3主晶相,无杂峰产生,表明所掺杂的铌完全固溶到BaTiO3中;衍射峰位置与标准峰基本一致,未见明显偏移,这是因为Nb5+(半径0.069 nm)与Ti4+(半径0.068 nm)半径相近,Nb5+取代Ti4+进入钛酸钡晶格并未导致较大晶格畸变。

    图  5  1 290 ℃烧结温度下掺杂不同物质的量分数铌的陶瓷的XRD谱(锰物质的量分数为0.001 0)
    Figure  5.  XRD patterns of ceramics doped with different molar fractions of Nb under sintering temperature of 1 290 ℃ (Mn molar fraction of 0.001 0)

    图6可以看出:当掺杂铌的物质的量分数为0.002 0,0.002 2时,陶瓷晶粒尺寸为7~8 μm,陶瓷中出现异常长大的晶粒以及气孔,此时陶瓷的致密性较差;随着铌掺杂量的增加,陶瓷的晶粒尺寸减小,气孔数量减少,这是因为铌掺杂量的增加会导致施主离子在晶界处发生偏析,从而使晶界处受主杂质的浓度增大,阻碍晶界移动的效果增强,因此晶粒尺寸减小。但是当掺杂铌的物质的量分数大于0.002 4时,过量的铌可能导致烧结过程中晶界处的铌离子过度富集,阻碍晶界的有效移动和重新排列,从而无法完全消除气孔,导致气孔数量增多,致密性降低。此外,铌的过量掺杂可能改变材料的烧结特性,导致局部过烧或烧结不足,形成更多的气孔或使原有的气孔尺寸进一步增大。当掺杂铌的物质的量分数为0.002 4时,陶瓷晶粒尺寸均匀,在4~5 μm范围,气孔数量较少,致密性最好,因此体积密度最大。

    图  6  1290 ℃烧结温度下掺杂不同物质的量分数铌的陶瓷断面的SEM形貌(锰物质的量分数为0.001 0)
    Figure  6.  SEM morphology of ceramic sections doped with different molar fractions of Nb under sintering temperature of 1 290 ℃ (Mn molar fraction of 0.001 0)

    表2可以发现,随着铌掺杂量的增加,陶瓷的升阻比和温度系数均先增大后减小,室温电阻率先减小后增大,居里温度在270~281 ℃。铌作为施主离子(Nb5+)进入晶格后,会替代Ti4+,从而释放额外的电子,增加材料中的自由载流子数量;这些自由电子是通过施主掺杂的电子补偿机制产生的[24-25]。当掺杂铌的物质的量分数为0.002 0与0.002 2时,自由移动的载流子较少,因此陶瓷的室温电阻率较大;随着铌掺杂量的增加,自由移动的载流子数量增加,陶瓷的室温电阻率逐渐减小;当铌物质的量分数为0.002 4时,电子补偿机制最为显著,室温电阻率达到最小,且升阻比达到最大;当铌物质的量分数达到0.002 6及以上时,大量TiO2在晶界处偏析,引起晶界势垒的增加,阻碍晶界移动,同时陶瓷结构中产生钡空位,通过空位补偿机制来平衡电荷,由于空位不具备导电性,自由移动的载流子数量减少,因此陶瓷室温电阻率增大。综上,当烧结温度为1 290 ℃,掺杂锰和铌的物质的量分数分别为0.001 0,0.002 4时,钛酸铅钡基PTC陶瓷的电学性能最佳,升阻比和温度系数最大,分别为7.011×103和20.19%,室温电阻率为2.13×103 Ω·cm,居里温度为281 ℃,这与此时陶瓷晶粒尺寸均匀、体积密度最大(5.882 g·cm−3)有关。

    表  2  1 290 ℃烧结温度下掺杂不同物质的量分数铌的陶瓷的阻温特性参数(锰物质的量分数为0.001 0)
    Table  2.  Resistance temperature characteristic parameters of ceramics doped with different molar fractions of Nb under sintering temperature of 1 290 ℃ (Mn molar fraction of 0.001 0)
    铌物质的量分数室温电阻/Ω室温电阻率/(Ω·cm)升阻比居里温度/℃温度系数/%
    0.002 03 3008.34×1048.622×10227015.22
    0.002 21 6774.11×1041.241×10327417.19
    0.002 4752.13×1037.011×10328120.19
    0.002 61554.55×1036.212×10327718.57
    0.002 84001.14×1042.917×10327616.84
    0.003 08072.42×1048.121×10227014.04
    下载: 导出CSV 
    | 显示表格

    (1)随着烧结温度的升高,掺杂不同物质的量分数锰或铌的陶瓷的体积密度均呈先升后降的趋势,当烧结温度在1 290 ℃,陶瓷的体积密度均最大,结构均为纯钙钛矿结构。

    (2)当烧结温度为1 290 ℃时,固定铌的物质的量分数为0.002 8,随着锰掺杂量的增加,陶瓷的体积密度先升后降,晶粒尺寸增加,室温电阻率增大,升阻比和温度系数基本呈先增后减的趋势,居里温度稳定为271~280 ℃。固定锰的物质的量分数为0.001 0时,随着铌掺杂量的增加,陶瓷的体积密度先增后减,晶粒尺寸减小,升阻比和温度系数先增大后减小,室温电阻率先减小后增大,居里温度稳定在270~281 ℃。

    (3)当烧结温度为1 290 ℃,掺杂锰和铌的物质的量分数分别为0.001 0,0.002 4时,钛酸铅钡基PTC陶瓷的阻温特性最佳,升阻比和温度系数最大,分别为7.011×103和20.19%,室温电阻率为2.13×103 Ω·cm,居里温度为281 ℃,这与此时陶瓷晶粒尺寸均匀、体积密度最大(5.882 g·cm−3)有关。

  • 图  1   掺杂不同物质的量分数锰陶瓷的体积密度随烧结温度的变化曲线(铌物质的量分数为0.002 8)

    Figure  1.   Curves of volume density vs sintering temperature of ceramics doped with different molar fractions of Mn (Nb molar fraction of 0.002 8)

    图  2   1 290 ℃烧结温度下掺杂不同物质的量分数锰陶瓷的XRD谱(铌物质的量分数为0.002 8)

    Figure  2.   XRD patterns of ceramics doped with different molar fractions of Mn under sintering temperature of 1 290 ℃ (Nb molar fraction of 0.002 8)

    图  3   1 290 ℃烧结温度下掺杂不同物质的量分数锰陶瓷的断面SEM形貌(铌物质的量分数为0.002 8)

    Figure  3.   SEM morphology of ceramic sections doped with different molar fractions of Mn under sintering temperature of 1 290 ℃ (Nb molar fraction of 0.002 8)

    图  4   掺杂不同物质的量分数铌的陶瓷的体积密度随烧结温度的变化曲线(锰物质的量分数为0.001 0)

    Figure  4.   Curves of volume density vs sintering temperature of ceramics doped with different molar fractions of Nb (Mn molar fraction of 0.001 0)

    图  5   1 290 ℃烧结温度下掺杂不同物质的量分数铌的陶瓷的XRD谱(锰物质的量分数为0.001 0)

    Figure  5.   XRD patterns of ceramics doped with different molar fractions of Nb under sintering temperature of 1 290 ℃ (Mn molar fraction of 0.001 0)

    图  6   1290 ℃烧结温度下掺杂不同物质的量分数铌的陶瓷断面的SEM形貌(锰物质的量分数为0.001 0)

    Figure  6.   SEM morphology of ceramic sections doped with different molar fractions of Nb under sintering temperature of 1 290 ℃ (Mn molar fraction of 0.001 0)

    表  1   1 290 ℃烧结温度下掺杂不同物质的量分数锰陶瓷的阻温特性参数(铌物质的量分数为0.002 8)

    Table  1   Resistance temperature characteristic parameters of ceramics doped with different molar fractions of Mn under sintering temperature of 1 290 ℃ (Nb molar fraction of 0.002 8)

    锰物质的量分数室温电阻/Ω室温电阻率/(Ω·cm)升阻比居里温度/℃温度系数/%
    0.000 53298.73×1031.521×1022726.12
    0.000 83891.03×1042.714×1022718.71
    0.001 04001.14×1042.917×10327618.14
    0.001 51 3003.45×1041.050×10328015.87
    0.002 01 8186.82×1041.128×10327713.51
    0.002 5 55 0002.06×1061.054×10327612.94
    下载: 导出CSV

    表  2   1 290 ℃烧结温度下掺杂不同物质的量分数铌的陶瓷的阻温特性参数(锰物质的量分数为0.001 0)

    Table  2   Resistance temperature characteristic parameters of ceramics doped with different molar fractions of Nb under sintering temperature of 1 290 ℃ (Mn molar fraction of 0.001 0)

    铌物质的量分数室温电阻/Ω室温电阻率/(Ω·cm)升阻比居里温度/℃温度系数/%
    0.002 03 3008.34×1048.622×10227015.22
    0.002 21 6774.11×1041.241×10327417.19
    0.002 4752.13×1037.011×10328120.19
    0.002 61554.55×1036.212×10327718.57
    0.002 84001.14×1042.917×10327616.84
    0.003 08072.42×1048.121×10227014.04
    下载: 导出CSV
  • [1] HUAN Y ,WANG X H ,FANG J ,et al. Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics[J]. Journal of the European Ceramic Society,2014,34(5):1445-1448.
    [2] CHENG X X ,ZHOU D X ,FU Q Y ,et al. Influence of sintering conditions on the electrical properties and the PTCR effect of the multilayer Ba1.005(Ti1−xNbx)O3 ceramics with Ni internal electrode[J]. Journal of Materials Science:Materials in Electronics,2012,23(12):2202-2209.
    [3] ZHOU D X ,CHENG X X ,FU Q Y ,et al. Influence of cooling mode on the electrical properties and microstructure of Ba1.022−xSmxTiO3 ceramics sintered in a reducing atmosphere[J]. Ceramics International,2012,38(8):6389-6397.
    [4] HEYWANG W. Resistivity anomaly in doped Barium titanate[J]. Journal of the American Ceramic Society,1964,47(10):484-490.
    [5] 周东祥,龚树萍. PTC材料及应用[M]. 武汉:华中理工大学出版社,1989:1-30.

    ZHOU D X ,GONG S P. PTC materials and applications[M]. Wuhan:Huazhong University of Science and Technology Press,1989:1-30.

    [6] 钟志勇钛酸铅钡基热敏陶瓷两步合成法制备技术研究武汉华中科技大学2019钟志勇. 钛酸铅钡基热敏陶瓷两步合成法制备技术研究[D]. 武汉:华中科技大学,2019.

    ZHONG Z YStudy on preparation technology of lead barium titanate based thermal sensitive ceramics by two-step synthesisWuhanHuazhong University of Science and Technology2019ZHONG Z Y. Study on preparation technology of lead barium titanate based thermal sensitive ceramics by two-step synthesis[D]. Wuhan:Huazhong University of Science and Technology,2019.

    [7] 张南平高居里点PTC材料显微结构与性能关系研究武汉华中科技大学2019张南平. 高居里点PTC材料显微结构与性能关系研究[D]. 武汉:华中科技大学,2019.

    ZHANG N PStudy on the relationship between microstructure and properties of high Curie point PTC materialsWuhanHuazhong University of Science and Technology2019ZHANG N P. Study on the relationship between microstructure and properties of high Curie point PTC materials[D]. Wuhan:Huazhong University of Science and Technology,2019.

    [8] 高小云高居里点钛酸钡基热敏陶瓷低温烧结研究武汉华中科技大学2022高小云. 高居里点钛酸钡基热敏陶瓷低温烧结研究[D]. 武汉:华中科技大学,2022.

    GAO X YStudy on low temperature sintering of barium titanate thermosensitive ceramics with high Curie pointWuhanHuazhong University of Science and Technology2022GAO X Y. Study on low temperature sintering of barium titanate thermosensitive ceramics with high Curie point[D]. Wuhan:Huazhong University of Science and Technology,2022.

    [9] LI B ,ZHU F ,ZHENG D Y ,et al. Enhancing the electrical properties of high-Curie temperature BNT–PZT piezoceramics by oxides-hydrothermal method[J]. 2021,11(7):075119.
    [10] SHILKINA L A ,TALANOV M V ,SHEVTSOVA S I ,et al. Isomorphism problems in lead-barium titanate[J]. Journal of Alloys and Compounds,2020,829:154589.
    [11] RAMDASI O A ,KADHANE P S ,JADHAV T K ,et al. Improved Tc and ferroelectric fatigue characteristics of BaTiO3-rich(1−x)BaTiO3-xBi0.5K0.5TiO3 lead-free electroceramics[J]. Journal of Materials Science:Materials in Electronics,2024,35(16):1101.
    [12] 杨双娟,董桂霞,管若含,等. BaTiO3基正温度系数热敏陶瓷研究现状及应用[J]. 粉末冶金技术,2023,41(2):167-174.

    YANG S J ,DONG G X ,GUAN R H ,et al. Research status and application of BaTiO3-based positive temperature coefficient thermal ceramics[J]. Powder Metallurgy Technology,2023,41(2):167-174.

    [13] 丁士文,潘彬,啜艳明,等. 烧结工艺对BaTiO3基PTC热敏电阻材料性能的影响[J]. 河北师范大学学报(自然科学版),2011,31(5):486-490.

    DING S W ,PAN B ,CHUAI Y M ,et al. Influence of sintering process on the properties of BaTiO3-based PTCR ceramics[J]. Journal of Hebei University (Natural Science Edition),2011,31(5):486-490.

    [14] RASE D E ,ROY R. Phase equilibria in the system BaO-TiO2 [J]. Journal of the American Ceramic Society,1955,38(3):102-113.
    [15] RHIM S M ,HONG S ,BAK H ,et al. Effects of B2O3 addition on the dielectric and ferroelectric properties of Ba0.7Sr0.3TiO3 ceramics[J]. Journal of the American Ceramic Society,2000,83(5):1145-1148.
    [16] ZHAO T Y ,YE Y S ,GUO K X ,et al. High energy storage properties of calcium-doped Barium titanate thin films with high breakdown field strength[J]. Journal of Alloys and Compounds,2024,970:172487.
    [17] 雷佳钛酸钡基PTC陶瓷NTC效应研究广州华南理工大学2018雷佳. 钛酸钡基PTC陶瓷NTC效应研究[D]. 广州:华南理工大学,2018.

    LEI JStudy on NTC effect of barium titanate-based PTC ceramicsGuangzhouSouth China University of Technology2018LEI J. Study on NTC effect of barium titanate-based PTC ceramics[D]. Guangzhou:South China University of Technology,2018.

    [18] CHENG X X ,CUI H N ,XU Z Y ,et al. Influence of sintering time on the PTCR effect of Nb2O5-doped BaTiO3 ceramics[J]. Materials Research,2019,22(S2):20180767.
    [19] 方志远,沈春英,丘泰. BaTiO3系PTC热敏电阻材料的研究进展[J]. 电子元件与材料,2010,29(10):69-71.

    FANG Z Y ,SHEN C Y ,QIU T. Research progress of BaTiO3 PTC thermistor materials[J]. Electronic Components and Materials,2010,29(10):69-71.

    [20] DING S W ,JIA G ,WANG J ,et al. Electrical properties of Y- and Mn-doped BaTiO3-based PTC ceramics[J]. Ceramics International,2008,34(8):2007-2010.
    [21] LIU J Q ,JIN G H ,CHEN Y Z ,et al. Effects of manganese on highly donor-doped barium titanate ceramics with resistivity of positive temperature coefficient[J]. Materials Science,2020,26(4):457-462.
    [22] HEYWANG W. Bariumtitanat als sperrschichthalbleiter[J]. Solid-State Electronics,1961,3(1):51-58.
    [23] JONKER G H. Some aspects of semiconducting barium titanate[J]. Solid-State Electronics,1964,7(12):895-903.
    [24] 李燕燕,李国荣,王天宝,等. Nb2O5掺杂高温无铅(Ba,Bi,Na)TiO3基PTCR陶瓷结构与电性能研究[J]. 无机材料学报,2009,24(2):374-378.

    LI Y Y ,LI G R ,WANG T B ,et al. Effects of niobium-doping on the structure and electrical properties of (Ba,Bi,Na) TiO3-based PTCR ceramics[J]. Journal of Inorganic Materials,2009,24(2):374-378.

    [25] LIU J Q ,JIN G H ,CHEN Y Z ,et al. Properties of yttrium-doped barium titanate ceramics with positive temperature coefficient of resistivity and a novel method to evaluate the depletion layer width[J]. Ceramics International,2019,45(5):6119-6124.
图(6)  /  表(2)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-14
  • 修回日期:  2024-09-12
  • 刊出日期:  2025-03-19

目录

/

返回文章
返回