Stress Relaxation Behavior at Medium Temperature and Creep Constitutive Equation Modification of GH4169 Alloy
-
摘要:
对GH4169合金开展了温度为450~550 ℃、时间为600 h、初始应力为800 MPa的应力松弛试验,分析了其应力松弛行为,利用三次延迟函数拟合出应力与时间的关系;引入槛应力对Arrhenius蠕变本构模型进行修正,采用未修正和修正后的模型模拟了应力松弛曲线,并与试验结果进行对比。结果表明:GH4169合金在应力松弛试验后的剩余应力随温度的升高呈先减小后增大的趋势,450,500,550 ℃下的应力松弛量分别约为12,18,15 MPa。构建的三次延迟函数可以准确描述GH4169合金应力与时间的关系,拟合相关系数均大于0.999。基于引入槛应力修正的Arrhenius模型模拟得到的GH4169合金中温应力松弛曲线与试验结果吻合较好,最大相对误差为0.02%,而基于未修正Arrhenius模型模拟得到的500 ℃和550 ℃应力松弛结曲线与试验结果偏差较大,最大相对误差为0.1%。修正Arrhenius模型可以更好地预测GH4169合金的中温应力松弛行为。
Abstract:The stress relaxation tests were carried out for GH4169 alloy at temperatures of 450–550 ℃, time of 600 h and initial stress of 800 MPa, and the stress relaxation behavior was analyzed. The relationship between stress and time was fitted by using the cubic delay function. The threshold stress was introduced to modify the Arrhenius creep constitutive model. The stress relaxation curves were obtained by unmodified and modified models and were compared with the test results. The results show that the remaining stress of GH4169 alloy after stress relaxation tests first decreased and then increased with the increase of temperature, and the stress relaxation amounts at 450,500,550 ℃ were about 12,18,15 MPa, respectively. The constructed cubic delay function could accurately describe the relationship between stress and time of GH4169 alloy, with the fitting correlation coefficients all greater than 0.999. The stress relaxation curves of GH4169 alloy at medium temperature simulated by modified Arrhenius model with introducing threshold stress were in good agreement with the test results, with the maximum relative error of 0.02%. The stress relaxation curves simulated at 500 ℃ and 550 ℃ based on unmodified Arrhenius model had a larger deviation from the test results, and the maximum relative error was 0.1%. The modified Arrhenius model could better predict the stress relaxation behavior of GH4169 alloy at medium temperature.
-
0. 引言
车轴是铁路机车中一个十分重要的构件,世界各国对提高车轴的可靠性均十分重视[1-5]。我国铁道车辆的提速加载对大功率机车及高速列车车轴用钢的性能提出了更高的要求。国内常用的机车车轴材料是40钢和50钢。40钢强度稍低,但韧性好,50钢强度较高,但韧性稍差,2种材料均已无法满足高速、重载铁路机车的要求[6]。EA4T钢是一种广泛使用于国外地铁动车车轴及大功率机车车轴的钢种,也是欧洲标准EN 13261规定的高速客车车轴用钢。之前我国的合金钢车轴主要靠进口,为了快速实现国家铁路机车重载技术和提速战略,通过引进、吸收、消化已实现车轴的国产化,许多新型机车都采用了国产的EA4T钢车轴,如9 600 kW牵引机车和武汉、深圳的地铁车辆等。
EA4T车轴钢的常规热处理工艺为调质热处理(淬火+高温回火),根据EN 13261:2009标准要求,调质热处理EA4T钢车轴轴颈1/2半径处的显微组织应全部为马氏体/贝氏体组织(以下简称为M/B组织)。当轴颈直径较小,如180 mm时,采用常规工艺调质热处理后,其1/2半径处可以全部获得M/B组织;但当轴颈直径较大,达到280 mm时,其1/2半径处在常规工艺下获得全部的M/B组织则较为困难[7-8]。在实际生产中为了保证大尺寸车轴淬火加热时心部能够淬透,常常采用提高加热温度(高于铁素体转变为奥氏体的终了温度Ac3 30~50 ℃)的方法进行淬火[9],而回火温度及方式尚需进一步研究。为了确定大尺寸国产EA4T钢车轴的热处理工艺,作者设计了EA4T钢等效车轴的热处理工艺,研究了热处理后等效车轴不同位置的显微组织与性能,据此确定车轴的调质热处理工艺并进行车轴的现场验证。
1. 试样制备与试验方法
试验材料为东北特殊钢集团股份有限公司抚顺特殊钢股份有限公司生产的尺寸280 mm×280 mm×350 mm的热轧退火态EA4T钢车轴毛坯,化学成分如表1所示,符合EN 13261:2009标准要求。在毛坯上加工出规格ϕ280 mm的圆柱体试样,将其作为实际尺寸为ϕ256 mm的EA4T钢车轴的等效车轴,并对其进行调质热处理预试验。
表 1 EA4T钢的化学成分Table 1. Chemical composition of EA4T steel项目 质量分数/% C Si Mn Cr Mo Ni P S V Al Cu Fe 测试值 0.28 0.32 0.70 1.06 0.24 0.17 0.004 0.001 0.04 0.029 0.03 余 标准值 0.22~0.29 0.15~0.40 0.50~0.80 0.90~1.20 0.15~0.30 ≤0.30 ≤0.020 ≤0.015 ≤0.06 ≤0.30 余 根据前期试验结果,EA4T钢的Ac3为840 ℃,在常规条件下其淬火温度应为870~890 ℃。但由于EN 13261:2009标准要求,EA4T钢在淬火时应具有较高的淬透性,而提高奥氏体加热温度可以获得更高的淬透性,故将等效车轴的淬火温度范围设置为890~920 ℃。等效车轴的淬火保温时间可以采用经验公式来估算,公式[10]如下:
(1) 式中:t为保温时间,min;α为加热系数,取值范围为0.9~1.1 min·mm−1;K为加热时的修正系数,取1.2;D为工件的有效厚度,取280 mm。
由式(1)计算得到,等效车轴的淬火保温时间为5~6 h。根据上述分析并结合前期研究[8],确定淬火工艺为900 ℃×5 h。为了确定大尺寸车轴坯的回火工艺,将EA4T钢等效车轴进行900 ℃×5 h水淬处理后,分别进行595,610,650 ℃保温6 h水冷回火处理[8]。
按照EN 13261:2009进行车轴的显微组织及力学性能研究。在不同调质工艺处理后的等效车轴表层、1/2半径处和心部截取金相试样,经打磨、抛光,用体积分数4%硝酸乙醇溶液腐蚀20 s后,用清水冲洗试样,并用乙醇擦拭,再用吹风机吹干,采用NEOPHOT-21型光学显微镜观察显微组织。按照GB/T 228—2002,在车轴表层、1/2半径处和心部位置截取拉伸试样,拉伸试样的尺寸为直径10 mm标准试样尺寸的10倍,在AG-250KNISMO型电子拉压试验机上进行室温拉伸试验,拉伸速度为10 mm·min−1,相同条件下测3次取平均值。按照GB/T 229—2007,在等效车轴表层、1/2半径处和心部分别沿轴向(即横向)和径向(即纵向)截取标准夏比U型冲击试样,在JXB-300型摆锤式冲击试验机上进行室温冲击试验,冲击速度为5 m·s−1,相同条件下测3次取平均值。根据等效车轴测试结果,确定符合标准要求的调质热处理工艺后进行规格ϕ256 mm EA4T钢车轴的现场验证,拉伸试样的尺寸为直径10 mm标准试样尺寸的5倍,冲击试样为5 mm缺口深度的U型冲击试样,测试设备及参数同前。采用Zeiss Supra 55型场发射扫描电镜(SEM)观察拉伸断口形貌。
2. 试验结果与讨论
2.1 调质热处理后等效车轴的组织和性能
由表2可以看出,与EN 13261:2009标准要求的力学性能(屈服强度不低于420 MPa,抗拉强度为650~800 MPa,断后伸长率不低于18%,纵向和横向冲击吸收能量分别不低于50,25 J)相比,等效车轴经900 ℃水淬后,除了595 ℃水冷回火后不同位置的抗拉强度,以及610 ℃水冷回火后表层的抗拉强度偏高之外,其余条件下的强度、断后伸长率、断面收缩率以及纵向与横向冲击韧性均符合要求,同时还存在较大的富裕量。
表 2 等效车轴经900 ℃×5 h水淬和不同温度保温6 h水冷回火后的力学性能Table 2. Mechanical properties of equivalent axle after 900 ℃×5 h water quenching and tempering at different temperatures for 6 h and water cooling回火温度/℃ 位置 屈服强度/MPa 抗拉强度/MPa 断后伸长率/% 断面收缩率/% 冲击吸收能量/J 纵向 横向 595 表层 719.0 866.0 19.0 62.5 156.0 128.0 1/2半径处 603.0 866.0 19.5 68.0 101.0 76.0 心部 694.0 861.0 18.5 62.5 107.0 93.0 610 表层 728.0 843.0 20.5 71.5 129.0 103.0 1/2半径处 628.0 763.0 27.5 65.0 101.0 155.0 心部 543.0 696.0 22.3 65.5 144.0 128.0 650 表层 629.0 781.0 19.0 67.0 141.0 164.0 1/2半径处 628.0 762.0 19.0 72.5 210.0 155.0 心部 595.0 749.0 18.3 66.5 111.0 169.0 由图1可以看出,等效车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火后,除了心部含有少量铁素体外,表层以及1/2半径处的组织基本为回火M/B组织,符合EN 13261:2009对车轴组织的要求。心部与表层、1/2半径处组织差异的原因主要在于冷却速率的不同,心部冷却速率较慢,未发生完全马氏体转变,导致生成少量铁素体,表层和1/2半径处冷却速率较快,形成了回火M/B组织。这种回火M/B组织具有较高的硬度和耐磨性,对车轴的表层性能有积极影响[11-12]。综上,确定EA4T钢车轴的调质热处理工艺为900 ℃×5 h水淬和650 ℃×6 h水冷回火。
2.2 调质热处理工艺的现场验证
在热处理车间采用规格ϕ256 mm的EA4T钢车轴对前文确定的调质热处理工艺(900 ℃×5 h水淬和650 ℃×6 h水冷回火)进行现场验证。由表3可以看出,规格ϕ256 mm的EA4T钢车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火后,不同位置的力学性能均完全满足EN 13261:2009标准要求。由图2可以看出,不同部位的组织均为回火M/B组织,也满足EN 13261:2009标准要求。
位置 屈服强度/MPa 抗拉强度/MPa 断后伸长率/% 断面收缩率/% 冲击吸收能量/J 纵向 横向 表层 653.0 788.0 21.5 70.0 65.3 72.0 1/2半径处 569.0 717.0 21.5 65.0 80.0 71.3 心部 527.0 695.0 20.0 62.0 72.0 73.3 由图3和图4可以看出,车轴不同位置所取的拉伸试样在断裂前均发生了大量的塑性变形,为韧性断裂。宏观断口表现出明显的缩颈,且仅存在表现韧性的纤维区和剪切唇,而不存在表现脆性的放射区。纤维区微观均呈韧窝特征。在拉伸应力的作用下,试样发生颈缩而在最小截面处形成三维应力,其值在轴线方向上最大,这些三维应力使晶界、缺陷等处形成显微孔洞;随着应力的提高,孔洞不断长大且相互连接,同时产生新的孔洞,从而使裂纹缓慢形成并扩展,最终在断口上留下韧窝状的区域。综上所述,国产EA4T钢车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火的调质热处理后,其力学性能和组织均符合EN 13261:2009标准要求。
图 4 经900 ℃×5 h水淬和650 ℃×6 h水冷回火后ϕ256 mm车轴不同位置拉伸试样的断口SEM形貌Figure 4. Fracture SEM morphology of tensile samples in different areas ofϕ256 mm axle after 900 ℃×5 h water quenching and 650 ℃×6 h water cooling tempering: (a) surface layer, overall morphology;(b) surface layer, micromorphology of fiber area;(c) 1/2 radius position, overall morphology;(d) 1/2 radius position, micromorphology of fiber area;(e) core, overall morphology and (f) core, micromorphology of fiber area3. 结论
(1)国产ϕ280 mm EA4T钢等效车轴在进行900 ℃×5 h水淬和595 ℃×6 h水冷回火处理后不同位置以及610 ℃×6 h水冷回火后表层的抗拉强度均偏高,650 ℃×6 h水冷回火后的强度、断后伸长率、断面收缩率以及纵向与横向冲击韧性均符合EN 13261:2009标准要求,组织也基本为回火M/B组织。确定EA4T钢车轴的调质热处理工艺为900 ℃×5 h水淬和650 ℃×6 h水冷回火。
(2)现场验证得到经900 ℃×5 h水淬和650 ℃×6 h水冷回火后,国产ϕ256 mm EA4T钢车轴表层、1/2半径处和心部处的力学性能和显微组织均符合EN 13261:2009标准要求,不同位置取样拉伸后均发生韧性断裂,断口均由纤维区和剪切唇组成,纤维区呈韧窝形貌。
-
表 1 GH4169合金的化学成分
Table 1 Chemical composition of GH4169 alloy
元素 Ni Fe Cr Cu Mo Nb C Mn P S Si Ti Al Co B Mg 质量分数/% 51.28 余 18.56 0.06 2.99 5.23 0.032 0.15 0.007 0.003 0.13 1.03 0.44 0.1 0.004 0.002 表 2 GH4169合金三次延迟函数的材料常数
Table 2 Material constants of cubic delay function of GH4169 superalloy
温度/℃ σr/MPa B1/MPa τ1/h B2/MPa τ2/h B3/MPa τ3/h 450 787.5 2.79 6.57 3.79 40.14 5.59 341.37 500 782.5 8.53 0.83 3.98 20.60 4.67 256.95 550 785.7 9.49 0.49 2.07 18.93 2.35 249.47 表 3 不同应力指数和不同温度下拟合得到的槛应力和线性相关系数
Table 3 Threshold stresses and linear correlation coefficients at different stress exponents and temperatures
n1 温度/℃ 槛应力/MPa R2 7 450 777.8 0.991 7 500 775.6 0.973 7 550 781.6 0.987 8 450 775.8 0.994 8 500 774.8 0.978 8 550 780.8 0.990 9 450 774.0 0.995 9 500 774.6 0.980 9 550 780.3 0.992 表 4 不同温度下GH4169合金修正Arrhenius方程的参数
Table 4 Parameters of modified Arrhenius equation of GH4169 alloy at different temperatures
温度/℃ A3/h−1 α n2 Q/(J·mol−1) σth/MPa 450 1.956×1011 0.064 5.900 259 781 776 500 2.110×1010 0.091 5.113 775 550 1.878×109 0.117 6.766 780 -
[1] KUO C M ,YANG Y T ,BOR H Y ,et al. Aging effects on the microstructure and creep behavior of Inconel 718 superalloy[J]. Materials Science and Engineering:A,2009,510:289-294. [2] RAO G A ,KUMAR M ,SRINIVAS M ,et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718[J]. Materials Science and Engineering:A,2003,355(1/2):114-125. [3] AZADIAN S ,WEI L Y ,WARREN R. Delta phase precipitation in Inconel 718[J]. Materials Characterization,2004,53(1):7-16. [4] WARREN J ,WEI D Y. The cyclic fatigue behavior of direct age 718 at 149,315,454 and 538 ℃[J]. Materials Science and Engineering:A,2006,428(1/2):106-115. [5] KALININ G ,BARABASH V ,CARDELLA A ,et al. Assessment and selection of materials for ITER in-vessel components[J]. Journal of Nuclear Materials,2000,283:10-19. [6] SCHOLZ R ,MATERA R. Proton irradiation creep of Inconel 718 at 300 ℃[J]. Journal of Nuclear Materials,2000,283:414-417. [7] WANG Y Z ,DONG J X ,ZHANG M C ,et al. Stress relaxation behavior and mechanism of AEREX350 and Waspaloy superalloys[J]. Materials Science and Engineering:A,2016,678:10-22. [8] GJESTLAND H ,NUSSBAUM G ,REGAZZONI G ,et al. Stress-relaxation and creep behaviour of some rapidly solidified magnesium alloys[J]. Materials Science and Engineering:A,1991,134:1197-1200. [9] YANG X S ,WANG Y J ,ZHAI H R ,et al. Time-,stress-,and temperature-dependent deformation in nanostructured copper:Creep tests and simulations[J]. Journal of the Mechanics and Physics of Solids,2016,94:191-206. [10] PRASAD K ,SARKAR R ,GHOSAL P ,et al. Tensile deformation behaviour of forged disc of IN 718 superalloy at 650 ℃[J]. Materials & Design,2010,31(9):4502-4507. [11] KIM D H ,KIM J H ,SA J W ,et al. Stress rupture characteristics of Inconel 718 alloy for ramjet combustor[J]. Materials Science and Engineering:A,2008,483:262-265. [12] RAHIMI S ,KING M ,DUMONT C. Stress relaxation behaviour in IN718 nickel based superalloy during ageing heat treatments[J]. Materials Science and Engineering:A,2017,708:563-573. [13] CALVO J ,SHU S Y ,CABRERA J M. Characterization of precipitation kinetics of Inconel 718 superalloy by the stress relaxation technique[J]. Materials Science Forum,2012,706/707/708/709:2393-2399. [14] LU X D ,SHI S Y ,WEN B ,et al. Stress relaxation behavior of GH4169 alloy[J]. Materials Science Forum,2020,1013:52-58. [15] 迟海,郭霞,刘伟丽,等. GH4169合金的反常应力松弛行为[J]. 机械工程材料,2019,43(7):64-68. CHI H ,GUO X ,LIU W L ,et al. Abnormal stress relaxation behavior of GH4169 alloy[J]. Materials for Mechanical Engineering,2019,43(7):64-68.
[16] ZHANG X Z ,DENG Y ,LIANG T ,et al. Modeling and verification of stress relaxation behavior of Ti-6Al-4V[J]. MATEC Web of Conferences,2020,321:11076. [17] DENG X W ,HUI S X ,YE W J ,et al. Numerical simulation and process optimization on hot twist-stretch straightening of Ti-6Al-4V alloy profile[J]. Materials,2022,15(13):4522. [18] DENG T S ,LI S ,LIANG Y Q ,et al. Material characterization and validation for stress relaxation of Ti-4Al-1.5Mn alloy at high temperature[J]. Rare Metal Materials and Engineering,2021,50(3):829-834. [19] 毕静,崔学习,张艳苓,等. Ti-6Al-4V钛合金薄板应力松弛行为研究[J]. 机械工程学报,2019,55(18):43-52. BI J ,CUI X X ,ZHANG Y L ,et al. Investigations on stress relaxation behavior of Ti-6Al-4V titanium alloy thin sheet[J]. Journal of Mechanical Engineering,2019,55(18):43-52.
[20] XIAO J J ,LI D S ,LI X Q. Modeling and simulation for the stress relaxation behavior of Ti-6Al-4V at medium temperature[J]. Rare Metal Materials and Engineering,2015,44(5):1046-1051. [21] 穆霞英. 蠕变力学[M]. 西安:西安交通大学出版社,1990. MU X Y. Creep mechanics[M]. Xi'an:Xi'an Jiaotong University Press,1990.
[22] NAZMY M ,GERDES C. The relaxation behavior of high chromium-Ni base superalloys[J]. Advanced Materials Research,2011,278:321-326. [23] KARADGE M ,GRANT B ,WITHERS P J ,et al. Thermal relaxation of residual stresses in nickel-based superalloy inertia friction welds[J]. Metallurgical and Materials Transactions A,2011,42(8):2301-2311. [24] 林兆荣,熊志卿. TA2、TC1、TC4钛板高温短时应力松弛的研究[J]. 稀有金属材料与工程,1983,12(6):1-7. LIN Z R ,XIONG Z Q. Study on short-term stress relaxation of TA2,TC1 and TC4 titanium plates at high temperature[J]. Rare Metal Materials and Engineering,1983,12(6):1-7.
[25] LIU P ,ZONG Y Y ,SHAN D B ,et al. Relationship between constant-load creep,decreasing-load creep and stress relaxation of titanium alloy[J]. Materials Science and Engineering:A,2015,638:106-113. [26] ZENER C ,HOLLOMON J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics,1944,15(1):22-32. [27] COBLE R L. A model for boundary diffusion controlled creep in polycrystalline materials[J]. 1963,34(6):1679-1682. [28] RUANO O A ,SHERBY O D. On constitutive equations for various diffusion-controlled creep mechanisms[J]. Revue de Physique Appliquée,1988,23(4):625-637. [29] SOMEKAWA H ,HIRAI K ,WATANABE H ,et al. Dislocation creep behavior in Mg-Al-Zn alloys[J]. Materials Science and Engineering:A,2005,407(1/2):53-61. [30] SINHA N K. Power-law breakdown:An examination using strain relaxation and recovery tests on a nickel-base superalloy,IN-738LC[J]. Journal of Materials Science Letters,2002,21(17):1389. [31] 刘勇,朱景川,尹钟大. 魏氏组织Ti-6Al-4V合金应力松弛行为及机理[J]. 稀有金属材料与工程,2005,34(11):1766-1769. LIU Y ,ZHU J C ,YIN Z D. Stress relaxation behavior and related mechanism of Ti-6Al-4V alloy with widmanstatten microstructure[J]. Rare Metal Materials and Engineering,2005,34(11):1766-1769.
[32] CHRISTOPHER J ,CHOUDHARY B K. Constitutive modelling of stress-relaxation behaviour of tempered martensitic P91 steel using sine hyperbolic rate law[J]. Materials Chemistry and Physics,2018,205:442-451. [33] ENNIS P J ,ZIELINSKA-LIPIEC A ,WACHTER O ,et al. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant[J]. Acta Materialia,1997,45(12):4901-4907. [34] MISHRA R S ,BIELER T R ,MUKHERJEE A K. Superplasticity in powder metallurgy aluminum alloys and composites[J]. Acta Metallurgica et Materialia,1995,43(3):877-891. [35] GUGULOTH K ,ROY N. Study on the creep deformation behavior and characterization of 9Cr-1Mo-V-Nb steel at elevated temperatures[J]. Materials Characterization,2018,146:279-298. [36] ZHENG W J ,ZHU J J ,YUAN W H. Tempering stress relaxation behavior and microstructure evolution of 300M steel[J]. Materials Characterization,2023,197:112688. [37] 李小琳,刘林锡,李雅婷,等. 单一MX型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报,2022,58(9):1199-1207. LI X L ,LIU L X ,LI Y T ,et al. Mechanical properties and creep behavior of MX-type precipitates strengthened heat resistant martensite steel[J]. Acta Metallurgica Sinica,2022,58(9):1199-1207.