Deformation Behavior and Constitutive Equation of 2219 Aluminum Alloy during Plane Strain Compression
-
摘要:
通过平面应变压缩试验获得2219铝合金在变形温度320~480 ℃、应变速率0.1~10 s−1、最大真应变1.2条件下的压缩变形行为;基于试验得到的真应力-真应变数据和Arrhenius双曲正弦模型,分别建立峰值应力本构方程和应变补偿本构方程,获得合金的热变形激活能和应力指数,分析合金的变形机制。结果表明:在平面应变压缩过程中,合金的流变应力先迅速升高,达到峰值应力后稍有下降,最后趋于稳定;流变应力随变形温度的升高或应变速率的降低而降低。峰值应力本构方程预测的真应力与试验值的最大相对误差为4.57%;应变补偿的本构方程预测得到的真应力与试验值的平均绝对相对误差为2.62%,线性相关系数为0.995 3。建立的本构方程都能够准确预测2219铝合金在平面应变压缩变形过程中的流变应力。在整个变形过程中热变形激活能范围为135.138~145.410 kJ·mol−1,应力指数范围为5.920~6.930,表明变形时合金主要的扩散机制为晶格扩散,主要的变形机制为位错攀移。
Abstract:The deformation behavior of 2219 aluminum alloy was obtained by plane strain compression tests under deformation temperatures of 320–480 ℃, strain rates of 0.1–10 s−1, and a maximum true strain of 1.2. Based on the test true stress and true strain data and Arrhenius hyperbolic sine model, the peak stress constitutive equation and strain compensation constitutive equation were established, and the thermal deformation activation energy and stress exponent of the alloy were calculated. The deformation mechanism of the alloy was analysed. The results show that during plane strain compression, the flow stress of the alloy first increased rapidly, and decreased slightly after reaching the peak stress, and finally tended to be stable. The flow stress decreased with the increase of deformation temperature or the decrease of strain rate. The maximum relative error between stresses predicted by the peak stress constitutive equation and the test value was 4.57%. The average absolute relative error between the predicted true stress by strain compensation constitutive equation and the test value was 2.62%, and the linear correlation coefficient was 0.995 3. The established constitutive equation both could accurately predict the flow stress of 2219 aluminum alloy during the plane strain compression deformation. During the whole deformation, the thermal deformation activation energy ranged from 135.138 kJ · mol−1 to 145.410 kJ · mol−1, and the stress exponent ranged from 5.920 to 6.930, indicating that the main diffusion mechanism was lattice diffusion and the main deformation mechanism was dislocation climbing.
-
0. 引言
车轴是铁路机车中一个十分重要的构件,世界各国对提高车轴的可靠性均十分重视[1-5]。我国铁道车辆的提速加载对大功率机车及高速列车车轴用钢的性能提出了更高的要求。国内常用的机车车轴材料是40钢和50钢。40钢强度稍低,但韧性好,50钢强度较高,但韧性稍差,2种材料均已无法满足高速、重载铁路机车的要求[6]。EA4T钢是一种广泛使用于国外地铁动车车轴及大功率机车车轴的钢种,也是欧洲标准EN 13261规定的高速客车车轴用钢。之前我国的合金钢车轴主要靠进口,为了快速实现国家铁路机车重载技术和提速战略,通过引进、吸收、消化已实现车轴的国产化,许多新型机车都采用了国产的EA4T钢车轴,如9 600 kW牵引机车和武汉、深圳的地铁车辆等。
EA4T车轴钢的常规热处理工艺为调质热处理(淬火+高温回火),根据EN 13261:2009标准要求,调质热处理EA4T钢车轴轴颈1/2半径处的显微组织应全部为马氏体/贝氏体组织(以下简称为M/B组织)。当轴颈直径较小,如180 mm时,采用常规工艺调质热处理后,其1/2半径处可以全部获得M/B组织;但当轴颈直径较大,达到280 mm时,其1/2半径处在常规工艺下获得全部的M/B组织则较为困难[7-8]。在实际生产中为了保证大尺寸车轴淬火加热时心部能够淬透,常常采用提高加热温度(高于铁素体转变为奥氏体的终了温度Ac3 30~50 ℃)的方法进行淬火[9],而回火温度及方式尚需进一步研究。为了确定大尺寸国产EA4T钢车轴的热处理工艺,作者设计了EA4T钢等效车轴的热处理工艺,研究了热处理后等效车轴不同位置的显微组织与性能,据此确定车轴的调质热处理工艺并进行车轴的现场验证。
1. 试样制备与试验方法
试验材料为东北特殊钢集团股份有限公司抚顺特殊钢股份有限公司生产的尺寸280 mm×280 mm×350 mm的热轧退火态EA4T钢车轴毛坯,化学成分如表1所示,符合EN 13261:2009标准要求。在毛坯上加工出规格ϕ280 mm的圆柱体试样,将其作为实际尺寸为ϕ256 mm的EA4T钢车轴的等效车轴,并对其进行调质热处理预试验。
表 1 EA4T钢的化学成分Table 1. Chemical composition of EA4T steel项目 质量分数/% C Si Mn Cr Mo Ni P S V Al Cu Fe 测试值 0.28 0.32 0.70 1.06 0.24 0.17 0.004 0.001 0.04 0.029 0.03 余 标准值 0.22~0.29 0.15~0.40 0.50~0.80 0.90~1.20 0.15~0.30 ≤0.30 ≤0.020 ≤0.015 ≤0.06 ≤0.30 余 根据前期试验结果,EA4T钢的Ac3为840 ℃,在常规条件下其淬火温度应为870~890 ℃。但由于EN 13261:2009标准要求,EA4T钢在淬火时应具有较高的淬透性,而提高奥氏体加热温度可以获得更高的淬透性,故将等效车轴的淬火温度范围设置为890~920 ℃。等效车轴的淬火保温时间可以采用经验公式来估算,公式[10]如下:
(1) 式中:t为保温时间,min;α为加热系数,取值范围为0.9~1.1 min·mm−1;K为加热时的修正系数,取1.2;D为工件的有效厚度,取280 mm。
由式(1)计算得到,等效车轴的淬火保温时间为5~6 h。根据上述分析并结合前期研究[8],确定淬火工艺为900 ℃×5 h。为了确定大尺寸车轴坯的回火工艺,将EA4T钢等效车轴进行900 ℃×5 h水淬处理后,分别进行595,610,650 ℃保温6 h水冷回火处理[8]。
按照EN 13261:2009进行车轴的显微组织及力学性能研究。在不同调质工艺处理后的等效车轴表层、1/2半径处和心部截取金相试样,经打磨、抛光,用体积分数4%硝酸乙醇溶液腐蚀20 s后,用清水冲洗试样,并用乙醇擦拭,再用吹风机吹干,采用NEOPHOT-21型光学显微镜观察显微组织。按照GB/T 228—2002,在车轴表层、1/2半径处和心部位置截取拉伸试样,拉伸试样的尺寸为直径10 mm标准试样尺寸的10倍,在AG-250KNISMO型电子拉压试验机上进行室温拉伸试验,拉伸速度为10 mm·min−1,相同条件下测3次取平均值。按照GB/T 229—2007,在等效车轴表层、1/2半径处和心部分别沿轴向(即横向)和径向(即纵向)截取标准夏比U型冲击试样,在JXB-300型摆锤式冲击试验机上进行室温冲击试验,冲击速度为5 m·s−1,相同条件下测3次取平均值。根据等效车轴测试结果,确定符合标准要求的调质热处理工艺后进行规格ϕ256 mm EA4T钢车轴的现场验证,拉伸试样的尺寸为直径10 mm标准试样尺寸的5倍,冲击试样为5 mm缺口深度的U型冲击试样,测试设备及参数同前。采用Zeiss Supra 55型场发射扫描电镜(SEM)观察拉伸断口形貌。
2. 试验结果与讨论
2.1 调质热处理后等效车轴的组织和性能
由表2可以看出,与EN 13261:2009标准要求的力学性能(屈服强度不低于420 MPa,抗拉强度为650~800 MPa,断后伸长率不低于18%,纵向和横向冲击吸收能量分别不低于50,25 J)相比,等效车轴经900 ℃水淬后,除了595 ℃水冷回火后不同位置的抗拉强度,以及610 ℃水冷回火后表层的抗拉强度偏高之外,其余条件下的强度、断后伸长率、断面收缩率以及纵向与横向冲击韧性均符合要求,同时还存在较大的富裕量。
表 2 等效车轴经900 ℃×5 h水淬和不同温度保温6 h水冷回火后的力学性能Table 2. Mechanical properties of equivalent axle after 900 ℃×5 h water quenching and tempering at different temperatures for 6 h and water cooling回火温度/℃ 位置 屈服强度/MPa 抗拉强度/MPa 断后伸长率/% 断面收缩率/% 冲击吸收能量/J 纵向 横向 595 表层 719.0 866.0 19.0 62.5 156.0 128.0 1/2半径处 603.0 866.0 19.5 68.0 101.0 76.0 心部 694.0 861.0 18.5 62.5 107.0 93.0 610 表层 728.0 843.0 20.5 71.5 129.0 103.0 1/2半径处 628.0 763.0 27.5 65.0 101.0 155.0 心部 543.0 696.0 22.3 65.5 144.0 128.0 650 表层 629.0 781.0 19.0 67.0 141.0 164.0 1/2半径处 628.0 762.0 19.0 72.5 210.0 155.0 心部 595.0 749.0 18.3 66.5 111.0 169.0 由图1可以看出,等效车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火后,除了心部含有少量铁素体外,表层以及1/2半径处的组织基本为回火M/B组织,符合EN 13261:2009对车轴组织的要求。心部与表层、1/2半径处组织差异的原因主要在于冷却速率的不同,心部冷却速率较慢,未发生完全马氏体转变,导致生成少量铁素体,表层和1/2半径处冷却速率较快,形成了回火M/B组织。这种回火M/B组织具有较高的硬度和耐磨性,对车轴的表层性能有积极影响[11-12]。综上,确定EA4T钢车轴的调质热处理工艺为900 ℃×5 h水淬和650 ℃×6 h水冷回火。
2.2 调质热处理工艺的现场验证
在热处理车间采用规格ϕ256 mm的EA4T钢车轴对前文确定的调质热处理工艺(900 ℃×5 h水淬和650 ℃×6 h水冷回火)进行现场验证。由表3可以看出,规格ϕ256 mm的EA4T钢车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火后,不同位置的力学性能均完全满足EN 13261:2009标准要求。由图2可以看出,不同部位的组织均为回火M/B组织,也满足EN 13261:2009标准要求。
位置 屈服强度/MPa 抗拉强度/MPa 断后伸长率/% 断面收缩率/% 冲击吸收能量/J 纵向 横向 表层 653.0 788.0 21.5 70.0 65.3 72.0 1/2半径处 569.0 717.0 21.5 65.0 80.0 71.3 心部 527.0 695.0 20.0 62.0 72.0 73.3 由图3和图4可以看出,车轴不同位置所取的拉伸试样在断裂前均发生了大量的塑性变形,为韧性断裂。宏观断口表现出明显的缩颈,且仅存在表现韧性的纤维区和剪切唇,而不存在表现脆性的放射区。纤维区微观均呈韧窝特征。在拉伸应力的作用下,试样发生颈缩而在最小截面处形成三维应力,其值在轴线方向上最大,这些三维应力使晶界、缺陷等处形成显微孔洞;随着应力的提高,孔洞不断长大且相互连接,同时产生新的孔洞,从而使裂纹缓慢形成并扩展,最终在断口上留下韧窝状的区域。综上所述,国产EA4T钢车轴经900 ℃×5 h水淬和650 ℃×6 h水冷回火的调质热处理后,其力学性能和组织均符合EN 13261:2009标准要求。
图 4 经900 ℃×5 h水淬和650 ℃×6 h水冷回火后ϕ256 mm车轴不同位置拉伸试样的断口SEM形貌Figure 4. Fracture SEM morphology of tensile samples in different areas ofϕ256 mm axle after 900 ℃×5 h water quenching and 650 ℃×6 h water cooling tempering: (a) surface layer, overall morphology;(b) surface layer, micromorphology of fiber area;(c) 1/2 radius position, overall morphology;(d) 1/2 radius position, micromorphology of fiber area;(e) core, overall morphology and (f) core, micromorphology of fiber area3. 结论
(1)国产ϕ280 mm EA4T钢等效车轴在进行900 ℃×5 h水淬和595 ℃×6 h水冷回火处理后不同位置以及610 ℃×6 h水冷回火后表层的抗拉强度均偏高,650 ℃×6 h水冷回火后的强度、断后伸长率、断面收缩率以及纵向与横向冲击韧性均符合EN 13261:2009标准要求,组织也基本为回火M/B组织。确定EA4T钢车轴的调质热处理工艺为900 ℃×5 h水淬和650 ℃×6 h水冷回火。
(2)现场验证得到经900 ℃×5 h水淬和650 ℃×6 h水冷回火后,国产ϕ256 mm EA4T钢车轴表层、1/2半径处和心部处的力学性能和显微组织均符合EN 13261:2009标准要求,不同位置取样拉伸后均发生韧性断裂,断口均由纤维区和剪切唇组成,纤维区呈韧窝形貌。
-
表 1 拟合得到应变补偿本构方程中各参数的多项式系数
Table 1 Coefficients of polynomials of different parameters in strain compensation constitutive equation
参数 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 数值 0.011 82 0.040 38 0.365 34 −1.610 57 4.182 12 −6.736 5 6.819 03 −4.243 57 1.493 29 −0.228 97 参数 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 数值 134.471 8 −36.575 21 228 9.116 −212 65.441 937 06.642 −230 805.4 333 952.5 −281 645.9 128 079.3 −242 65.33 参数 n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 数值 9.329 26 −67.667 92 622.440 3 −325 5.110 103 78.23 −206 91.94 257 97.93 −194 86.40 814 2.013 −144 2.673 参数 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 数值 23.157 11 −4.174 85 356.712 5 −343 7.799 154 38.47 −384 45.32 559 73.99 −473 57.84 215 61.67 −408 4.263 -
[1] 徐道芬,陈康华,陈运强,等. Fe对2219铝合金锻件组织与性能的影响[J]. 湖南大学学报(自然科学版),2020,47(6):116-124. XU D F ,CHEN K H ,CHEN Y Q ,et al. Effect of Fe on microstructure and properties of 2219 aluminum alloy forgings[J]. Journal of Hunan University(Natural Sciences),2020,47(6):116-124.
[2] YANG Y L ,ZHAN L H ,SHEN R L ,et al. Effect of pre-deformation on creep age forming of 2219 aluminum alloy:Experimental and constitutive modelling[J]. Materials Science and Engineering:A,2017,683:227-235. [3] LUO C H ,PENG W P ,CHEN T ,et al. Influence of heat treatment on properties of 2219AA-T6 FSW joints[J]. Applied Mechanics and Materials,2014,590:187-191. [4] WANG S ,LUO J R ,HOU L G ,et al. Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression[J]. Materials & Design,2016,107:277-289. [5] LEI C ,WANG Q D ,TANG H P ,et al. Hot deformation constitutive model and processing maps of homogenized Al-5Mg-3Zn-1Cu alloy[J]. Journal of Materials Research and Technology,2021,14:324-339. [6] 李旭,樊祥泽,杨庆波,等. 2195铝锂合金平面应变压缩的流变行为与微观组织[J]. 中国有色金属学报,2018,28(10):1980-1990. LI X ,FAN X Z ,YANG Q B ,et al. Flow behavior and microstructure of 2195 Al-Li alloy during plane strain compression[J]. The Chinese Journal of Nonferrous Metals,2018,28(10):1980-1990.
[7] XIAO G ,YANG Q W ,LI L X. Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method[J]. Transactions of Nonferrous Metals Society of China,2016,26(4):1096-1104. [8] JIA X D ,WANG Y N ,ZHOU Y ,et al. The study on forming property at high temperature and processing map of 2219 aluminum alloy[J]. Metals,2021,11(1):77. [9] ZHANG J ,CHEN B Q ,ZHANG B X. Effect of initial microstructure on the hot compression deformation behavior of a 2219 aluminum alloy[J]. Materials & Design,2012,34:15-21. [10] ZHANG Y ,JIANG R P ,YANG Y L ,et al. Hot deformation behavior and microstructure mechanisms of as-cast 2219 Al alloy[J]. JOM,2020,72(4):1638-1646. [11] LIU L ,WU Y X ,GONG H ,et al. Modification of constitutive model and evolution of activation energy on 2219 aluminum alloy during warm deformation process[J]. Transactions of Nonferrous Metals Society of China,2019,29(3):448-459. [12] LIU L ,WU Y X ,GONG H ,et al. A physically based constitutive model and continuous dynamic recrystallization behavior analysis of 2219 aluminum alloy during hot deformation process[J]. Materials,2018,11(8):1443. [13] 王敬,梁强,李永亮. 2219铝合金的动态软化及热流变行为研究[J]. 兵器材料科学与工程,2020,43(5):95-102. WANG J ,LIANG Q ,LI Y L. Dynamic softening and thermal flow behavior of 2219 aluminum alloy[J]. Ordnance Material Science and Engineering,2020,43(5):95-102.
[14] 易兆祥,李新和,常士武,等. 2219铝合金热压缩时的流变应力本构方程[J]. 机械工程材料,2018,42(7):53-56. YI Z X ,LI X H ,CHANG S W ,et al. Flow stress constitutive equation of 2219 aluminum alloy during hot compression[J]. Materials for Mechanical Engineering,2018,42(7):53-56.
[15] 潘红波,唐荻,胡水平,等. 平面应变压缩技术的研究[J]. 锻压技术,2008,33(2):75-79. PAN H B ,TANG D ,HU S P ,et al. Study on plane strain physical compression technology[J]. Forging & Stamping Technology,2008,33(2):75-79.
[16] XIAO G ,YANG Q W ,LI L X ,et al. Constitutive analysis of 6013 aluminum alloy in hot plane strain compression process considering deformation heating integrated with heat transfer[J]. Metals and Materials International,2016,22(1):58-68. [17] YANG Q B ,WANG X Z ,LI X ,et al. Hot deformation behavior and microstructure of AA2195 alloy under plane strain compression[J]. Materials Characterization,2017,131:500-507. [18] LIU S H ,PAN Q L ,LI M J ,et al. Microstructure evolution and physical-based diffusion constitutive analysis of Al-Mg-Si alloy during hot deformation[J]. Materials & Design,2019,184:108181. [19] 薛鹏鹏,曹富翔,邓坤坤,等. SiCp/2024Al复合材料板材的显微组织、力学性能及加工硬化行为[J]. 航空材料学报,2023,43(5):20-28. XUE P P ,CAO F X ,DENG K K ,et al. Microstructure,mechanical properties and work hardening behavior of SiCp/2024Al composite sheet[J]. Journal of Aeronautical Materials,2023,43(5):20-28.
[20] LIN Y C ,CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials & Design,2011,32(4):1733-1759. [21] ZHANG P ,CHEN M H. Progress in characterization methods for thermoplastic deforming constitutive models of Al–Li alloys:A review[J]. Journal of Materials Science,2020,55(23):9828-9847. [22] 陈天天,施晨琦,宁哲达,等. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报,2022,36(S1):416-424. CHEN T T ,SHI C Q ,NING Z D ,et al. Research progress of constitutive model and hot working diagram in hot deformation of metal and alloy materials[J]. Materials Reports,2022,36(增刊1):416-424.
[23] WANG Y X ,ZHAO G Q ,XU X ,et al. Constitutive modeling,processing map establishment and microstructure analysis of spray deposited Al-Cu-Li alloy 2195[J]. Journal of Alloys and Compounds,2019,779:735-751. [24] LIU W Y ,ZHAO H ,LI D ,et al. Hot deformation behavior of AA7085 aluminum alloy during isothermal compression at elevated temperature[J]. Materials Science and Engineering:A,2014,596:176-182. [25] CEPEDA-JIMÉNEZ C M ,RUANO O A ,CARSÍ M ,et al. Study of hot deformation of an Al-Cu-Mg alloy using processing maps and microstructural characterization[J]. Materials Science and Engineering:A,2012,552:530-539. [26] TRIMBLE D,O ,DONNELL G E. Flow stress prediction for hot deformation processing of 2024Al-T3 alloy[J]. Transactions of Nonferrous Metals Society of China,2016,26(5):1232-1250. [27] DONG Y Y ,ZHANG C S ,ZHAO G Q ,et al. Constitutive equation and processing maps of an Al-Mg-Si aluminum alloy:Determination and application in simulating extrusion process of complex profiles[J]. Materials & Design,2016,92:983-997. [28] KE B ,YE L Y ,TANG J G ,et al. Hot deformation behavior and 3D processing maps of AA7020 aluminum alloy[J]. Journal of Alloys and Compounds,2020,845:156113. [29] BEMBALGE O B ,PANIGRAHI S K. Hot deformation behavior and processing map development of cryorolled AA6063 alloy under compression and tension[J]. International Journal of Mechanical Sciences,2021,191:106100. [30] SANG D L ,FU R D ,LI Y J. The hot deformation activation energy of 7050 aluminum alloy under three different deformation modes[J]. Metals,2016,6(3):49. [31] SHI C J ,MAO W M ,CHEN X G. Evolution of activation energy during hot deformation of AA7150 aluminum alloy[J]. Materials Science and Engineering:A,2013,571:83-91. [32] WANG S ,HOU L G ,LUO J R ,et al. Characterization of hot workability in AA 7050 aluminum alloy using activation energy and 3-D processing map[J]. Journal of Materials Processing Technology,2015,225:110-121. [33] MIRZADEH H ,CABRERA J M ,NAJAFIZADEH A. Constitutive relationships for hot deformation of austenite[J]. Acta Materialia,2011,59(16):6441-6448.