• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

初始晶粒尺寸对大应变轧制AZ31镁合金板材显微组织和力学性能的影响

董勇, 董明, 汪哲能, 李龙, 余永成

董勇, 董明, 汪哲能, 李龙, 余永成. 初始晶粒尺寸对大应变轧制AZ31镁合金板材显微组织和力学性能的影响[J]. 机械工程材料, 2014, 38(7): 33-37.
引用本文: 董勇, 董明, 汪哲能, 李龙, 余永成. 初始晶粒尺寸对大应变轧制AZ31镁合金板材显微组织和力学性能的影响[J]. 机械工程材料, 2014, 38(7): 33-37.
DONG Yong, DONG Ming, WANG Zhe-neng, LI Long, YU Yong-cheng. Effect of Initial Grain Sizes on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets Fabricated by Large Strain Rolling[J]. Materials and Mechanical Engineering, 2014, 38(7): 33-37.
Citation: DONG Yong, DONG Ming, WANG Zhe-neng, LI Long, YU Yong-cheng. Effect of Initial Grain Sizes on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets Fabricated by Large Strain Rolling[J]. Materials and Mechanical Engineering, 2014, 38(7): 33-37.

初始晶粒尺寸对大应变轧制AZ31镁合金板材显微组织和力学性能的影响

基金项目: 

湖南工学院大学生研究性学习和创新性实验计划资助项目

详细信息
    作者简介:

    董勇(1974-), 男, 湖南衡阳人, 实验师, 硕士。

  • 中图分类号: TG146

Effect of Initial Grain Sizes on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets Fabricated by Large Strain Rolling

  • 摘要: 对自行熔炼制备的AZ31镁合金铸锭进行挤压并在350 ℃进行不同时间的退火处理, 以得到具有不同初始晶粒尺寸的板材, 然后对其在40%和80%的压下量下进行轧制, 研究了初始晶粒尺寸对轧后板材显微组织和力学性能的影响。结果表明: 经大应变轧制(压下量80%)后, 合金组织得到明显细化, 孪生诱发动态再结晶和旋转动态再结晶是大应变轧制过程中主要的再结晶机制; 随着初始晶粒尺寸的增大, 晶粒转动作用受到抑制, 孪生作用增强, 孪生诱发动态再结晶成为再结晶的主导机制, 从而获得了均匀的再结晶组织和优异的力学性能; 当压下量为80%时, 初始大尺寸晶粒板材的平均晶粒尺寸为5 μm, 其抗拉强度、屈服强度和伸长率分别为311.3 MPa, 206.8 MPa和28.3%。
    Abstract: AZ31 magnesium alloy ingot was self-prepared, extruded and annealed at 350 ℃ for different times in order to obtain the alloy sheet containing initial grains with different sizes, and then the sheet was rolled with reductions of 40% and 80%. The effects of initial grain sizes on microstructure and mechanical properties of the rolled sheet were investigated. The results show that the microstructure was significantly refined after large strain rolling with reduction of 80%, the main recrystallization mechanisms were twining induced dynamic recrystallization and rotation dynamic recrystallization. The role of grain rotation was restrained while the role of twinning was enhanced with the increase of initial grain sizes, therefore the role of twining induced dynamic recrystallization dominated, consequently, the homogeneous recrystallization microstructure and good mechanical properties were obtained. When the reduction was 80%, the tensile strength, yield strength and elongation of the magnesium sheet with the largest initial grain size of 5 μm were 311.3 MPa, 206.8 MPa and 28.3%, respectively.
  • [1] 陈振华.变形镁合金[M].北京: 化学工业出版社,2005:2-10.
    [2] 张青来,卢晨,朱燕萍,等.轧制方式对AZ31镁合金薄板组织和性能的影响[J].中国有色金属学报,2004,14(3):391-397.
    [3] ZHU S Q, YAN H G, CHEN J H, et al. Feasibility of high strain-rate rolling of a magnesium alloy across a wide temperature range[J].Scripta Materialia,2012,67(4):404-407.
    [4] 魏琳俊,杨寿智,夏伟军,等.镁合金板材特殊轧制技术的研究进展[J].机械工程材料,2012,36(11):14-18.
    [5] 詹美燕,李元元,陈宛德,等.大应变轧制技术制备细晶AZ31镁合金板材[J].华南理工大学学报, 2007,35(8):16-21.
    [6] EDDAHBI M, DEL VALLE J A, PEREZ-PRADO M T, et al. Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling[J].Materials Science and Engineering: A,2005,410/411:308-311.
    [7] ZHU S Q, YAN H G, CHEN J H, et al. Fabrication of Mg-Al-Zn-Mn alloy sheets with homogeneous fine-grained structures using high strain-rate rolling in a wide temperature range[J].Materials Science and Engineering: A,2013,559:765-772.
    [8] PEREZ-PRADO M T, DEL VALLE J A, RUANO O A. Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling[J].Scripta Materialia,2004,50(5):667-671.
    [9] 嵇文凤,严红革,陈吉华,等.轧制温度对大应变轧制AZ61镁合金板材显微组织和力学性能的影响[J].机械工程材料,2013,37(6):17-21.
    [10] PEREZ-PRADO M T, DEL VALLE J A, RUANO O A. Achieving high strength in commercial Mg cast alloys through large strain rolling[J].Materials Letters,2005,59(26):3299-3303.
    [11] ZHU S Q, YAN H G, CHEN J H, et al. Effect of twinning and dynamic recrystallization on the high strain rate rolling process[J].Scripta Materialia,2010,63(10):985-988.
    [12] PEREZ-PRADO M T, DEL VALLE J A, CONTRERAS J M, et al. Microstructural evolution during large strain hot rolling of an AM60 Mg alloy[J].Scripta Materialia,2004,50(5):661-665.
    [13] 杨续跃,张之岭,张雷,等.应变速率对AZ61镁合金动态再结晶行为的影响[J].中国有色金属学报,2011,21(8):1801-1807.
    [14] 张雷,杨续跃,霍庆欢,等.AZ31镁合金板材低温双向反复弯曲变形及退火过程的组织演化[J].金属学报,2011,47(8):990-996.
    [15] 陈振华,夏伟军,程永奇,等.镁合金织构与各向异性[J].中国有色金属学报,2005,15(1):1-11.
    [16] WU Y Z, YAN H G, CHEN J H, et al. Hot deformation behavior and microstructure evolution of ZK21 magnesium alloy[J].Materials Science and Engineering:A,2010,527(16/17):3670-3675.
    [17] HUO Q H, YANG X Y, MA J J, et al. Microstructure and textural evolution of AZ61 magnesium alloy sheet during bidirectional cyclic bending[J].Materials Characterization,2013,79:43-51.
    [18] CHEN Y J, WANG Q D, ROVEN H J, et al. Microstructure evolution in magnesium alloy AZ31 during cyclic extrusion compression[J].Journal of Alloys and Compounds,2008,462:192-200.
    [19] WU Y Z, YAN H G, CHEN J H, et al. Microstructure and mechanical properties of ZK21 magnesium alloy fabricated by multiple forging at different strain rates[J].Materials Science and Engineering: A,2012,556:164-169.
计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-04
  • 刊出日期:  2014-07-19

目录

    /

    返回文章
    返回