• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

含不同深度球形缺陷钢管应力集中系数的有限元分析

杨专钊, 刘道新, 张晓化

杨专钊, 刘道新, 张晓化. 含不同深度球形缺陷钢管应力集中系数的有限元分析[J]. 机械工程材料, 2013, 37(8): 89-94.
引用本文: 杨专钊, 刘道新, 张晓化. 含不同深度球形缺陷钢管应力集中系数的有限元分析[J]. 机械工程材料, 2013, 37(8): 89-94.
YANG Zhuan-zhao, LIU Dao-xin, ZHANG Xiao-hua. Finite Element Analysis of the Stress Concentration Factor of Sphere Defect in Various Depths on Pipeline[J]. Materials and Mechanical Engineering, 2013, 37(8): 89-94.
Citation: YANG Zhuan-zhao, LIU Dao-xin, ZHANG Xiao-hua. Finite Element Analysis of the Stress Concentration Factor of Sphere Defect in Various Depths on Pipeline[J]. Materials and Mechanical Engineering, 2013, 37(8): 89-94.

含不同深度球形缺陷钢管应力集中系数的有限元分析

基金项目: 

国家自然科学基金资助项目(51101127

51171154)

详细信息
    作者简介:

    杨专钊(1979-), 男, 内蒙古察右中旗人, 高级工程师, 博士研究生。

  • 中图分类号: TE88

Finite Element Analysis of the Stress Concentration Factor of Sphere Defect in Various Depths on Pipeline

  • 摘要: 通过有限元方法模拟了含单个不同深度(即缺陷深度和半径均分别为t/8, t/4和 t/2, 其中t为钢管公称壁厚)球形腐蚀缺陷X70钢管在不同服役条件(内压力)下的应力和应变状态, 得出不同状态下最大等效应力和最大等效应变分布情况, 进而求得含缺陷钢管缺陷应力集中系数。结果表明: 在静载条件下, 缺陷深度为t/8, t/4和 t/2时其对应的应力集中系数分别为2.52, 3.43和7.16, 并由此得出了球形缺陷应力集中系数与缺陷深度关系的拟合公式, 相关系数为0.994; 采用有限元方法求解球形缺陷管道应力集中系数与文献中同类缺陷钢管的结果一致, 证明了有限元方法的正确性。
    Abstract: The stress and strain situations of the X70 pipeline with single spherical corrosion defect which was different in depth ( both the defect depths and the defect radii were t/8, t/4 and t/2 respectively, t is pipe wall thickness) were analyzed by finite element method (FEM) under different service conditions (inner pressures) . The Von Mises equivalent stress distribution and the Von Mises equivalent strain distribution at different conditions were obtained. And the stress concentration factor was calculated according to the FEM results. The results showed that in dead loading the stress concentration factor of corroded pipe with defect depth of t/8, t/4 and t/2 were 2.52, 3.43 and 7.16, respectively. Meanwhile the fitted equation of stress concentration factor and ratio of defect depth was established, and the correlation coefficient was 0.994. Besides, the results of stress concentration factor based on the FEM coincided with the results of similar references, which proved the correctness of the FEM.
  • [1] 李鹤林, 冯耀荣.石油管材与装备失效分析案例集(一)[M].北京: 石油工业出版社, 2006.
    [2] 周向阳, 柯伟.点蚀坑的形貌与腐蚀疲劳裂纹萌生[J].金属学报, 1992, 28(8): 356-360.
    [3] 徐强, 万正权.含坑点腐蚀的壳体有限元方法[J].船舶力学, 2010, 14(增1): 84-93.
    [4] 徐强, 万正权.含坑点腐蚀的深海耐压球壳有限元分析[J].船舶力学, 2011(5): 498-505.
    [5] 陈定海, 穆志韬, 田述栋, 等.腐蚀坑应力集中系数影响分析[J].新技术新工艺, 2012(7): 97-99.
    [6] 章刚, 刘军, 刘永寿, 等.表面粗糙度对表面应力集中系数和疲劳寿命影响分析[J].机械强度, 2010, 32(1): 110-115.
    [7] YANG Z Z , LIU D X , ZHANG X H. Finite element methods analysis of the stress for line pipe with corrode groove during outdoor storage[J].Acta Metallurgica Sinica: English Letter, 2013, 26(2): 188-198.
    [8] 郁大照, 陈跃良, 段成美.多缺口应力集中系数有限元研究[J].强度与环境, 2002, 29(4): 19-22.
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-25
  • 刊出日期:  2013-08-19

目录

    /

    返回文章
    返回