• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

A6061-T6铝合金经超声表面纳米化后的显微组织和性能

曹小建, 李璨柱, 苏昌敏, 卞英植, 王清远, 村上理一

曹小建, 李璨柱, 苏昌敏, 卞英植, 王清远, 村上理一. A6061-T6铝合金经超声表面纳米化后的显微组织和性能[J]. 机械工程材料, 2014, 38(10): 74-78.
引用本文: 曹小建, 李璨柱, 苏昌敏, 卞英植, 王清远, 村上理一. A6061-T6铝合金经超声表面纳米化后的显微组织和性能[J]. 机械工程材料, 2014, 38(10): 74-78.
CAO Xiao-jian, LEE Chan-joo, SUH Chang-min, PYOUN Young-shik, WANG Qing-yuan, MURAKAMI Ri-ichi. Microstructure and Properties of A6061-T6 Aluminium Alloy after Ultrasonic Nanocrystal Surface Modification[J]. Materials and Mechanical Engineering, 2014, 38(10): 74-78.
Citation: CAO Xiao-jian, LEE Chan-joo, SUH Chang-min, PYOUN Young-shik, WANG Qing-yuan, MURAKAMI Ri-ichi. Microstructure and Properties of A6061-T6 Aluminium Alloy after Ultrasonic Nanocrystal Surface Modification[J]. Materials and Mechanical Engineering, 2014, 38(10): 74-78.

A6061-T6铝合金经超声表面纳米化后的显微组织和性能

基金项目: 

国家自然科学青年基金资助项目(11202108)

教育部创新团队项目(IRT1027)

南通大学引进人才项目(03080453)

详细信息
    作者简介:

    曹小建(1983-), 男, 江苏南通人, 讲师, 博士。

  • 中图分类号: TG176; TG146.2

Microstructure and Properties of A6061-T6 Aluminium Alloy after Ultrasonic Nanocrystal Surface Modification

  • 摘要: 利用超声表面纳米化技术(UNSM), 采用两组静态载荷(15, 30 N)分别对A6061-T6铝合金表面进行处理获得强塑性变形层, 利用光学显微镜、扫描电子显微镜和X射线衍射仪研究了由表面到基体的组织结构变化, 并通过疲劳试验研究了合金的疲劳性能的变化。结果表明: 载荷较大时, 合金表面强塑性变形层深度和表面硬度均较大, 表面残余压应力也大; 超声表面纳米化处理后, 试样表面粗糙度降低, 合金表面获得等轴状且取向随机分布的纳米晶组织; 处理后合金的疲劳破坏为剪切裂纹萌生机制, 而处理前的为近表面微空洞或微缺陷处萌生机制。
    Abstract: A severe plastic deformation (SPD) layer on the surface of A6061-T6 aluminum alloy was obtained by ultrasonic nanocrystal surface modification (UNSM) technique at static loads of 15 N and 30 N. The microstructure from surface to matrix was examined using optical microscopy, scanning electron microscopy and X-ray diffraction. Fatigue performance of the alloy was also studied by fatigue testing. The results show that the deep of SPD layer, surface hardness and surface residual compressive stress increased with the increase of static load. After being treated by UNSM technique, the surface roughness of samples declined, and the surface microstructure were isometric and random oriented nano-crystals. The fatigue fracture of A6061-T6 after UNSM showed the shearing crack initiation mechanism instead of typical subsurface facet or micro-void initiation mode before UNSM.
  • [1] LU K, LU J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach[J].J Mater Sci Technol, 1999, 15(3): 193-197.
    [2] ZHU K Y, VASSEL A, BRISSET F, et al. Nanostructure formation mechanism of α-titanium using SMAT[J].Acta Mater, 2004, 52(14): 4101-4110.
    [3] LIU G, WANG S C, LOU X F, et al. Low carbon steel with nanostructured surface layer induced by high-energy shot peening[J].Scripta Mater, 2001, 44: 1791-1795.
    [4] MORDYUK B N, MILMAN Y V, IEFIMOV M O, et al. Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel[J].Surf Coat Tech, 2008, 202(19): 4875-4883.
    [5] WANG T, WANG D P, LIU G, et al. Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing[J].Appl Surf Sci, 2008, 255(5): 1824-1829.
    [6] SUH C M, SONG G H, SUH M S, et al. Fatigue and mechanical characteristics of nanostructured tool steel by ultrasonic cold forging technology[J].Mater Sci Eng: A, 2007, 443: 101-106.
    [7] SUN H Q, SHI Y N, ZHANG M X. Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer[J].Surf Coat Tech, 2008, 202(13): 2859-2864.
    [8] VILLEGAS J C, SHAW L L, DAI K, et al. Enhanced fatigue resistance of a nickel-based hastelloy induced by a surface nanocrystallization and hardening process[J].Philos Mag Lett, 2005, 85(8): 427-438.
    [9] LI D, CHEN H N, XU H. The effect of nanostructured surface layer on the fatigue behaviors of a carbon steel[J].Appl Surf Sci, 2009, 255(6): 3811-3816.
    [10] 李东, 陈怀宁, 徐宏.表面纳米化对SS400钢应力腐蚀性能的影响[J].腐蚀与防护, 2009, 30(2): 84-86.
    [11] 陆晓峰, 廖明刚, 朱晓磊, 等.表面纳米化处理对Cr5Mo钢流动加速腐蚀性能影响[J].机械工程材料, 2014, 38(5): 66-70.
    [12] WANG K, TAO N R, LIU G, et al. Plastic strain-induced grain refinement at the nanometer scale in copper[J].Acta Mater, 2006, 54(19): 5281-5291.
    [13] ZHANG H W, HEI Z K, LIU G, et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment[J].Acta Mater, 2003, 51(7): 1871-1881.
    [14] WU X, TAO N, HONG Y, et al. Strain-induced grain refinement of cobalt during surface mechanical attrition treatment[J].Acta Mater, 2005, 53(3): 681-691.
    [15] SUN H Q, SHI Y N, ZHANG M X, et al. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy[J].Acta Mater, 2007, 55(3): 975-982.
    [16] MUKHANOV I I, GOLUBEV Y M. Hardening of steel details by ball vibrating with ultrasonic frequency[J].Machine Building Bulletin, 1966, 11: 52-59.
    [17] SUH C M, KIM M H, BAEK U B, et al. A study on the alternative technology using UNSM instead of the presetting method for torsion bar[J].Int J Mod Phys: B, 2010, 24(15/16): 2435-2440.
    [18] DAI K, VILLEGAS J, STONE Z, et al. Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process[J].Acta Mater, 2004, 52(20): 5771-5782.
    [19] JAFARI M, ENAYATI M H, ABBASI M H, et al. Compressive and wear behaviors of bulk nanostructured Al2024 alloy[J].Material and Design, 2010, 31(2): 663-669.
    [20] MAJZOOBI G H, AZADIKHAH K, NEMATI J. The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6[J].Mater Sci Eng: A, 2009, 516: 235-247.
    [21] 朱其芳, 孙泽明, 朱宝宏, 等.超声冲击纳米化对7B04高强铝合金疲劳性能的影响[J].纳米科技, 2009, 6(6): 25-28.
    [22] 周建忠, 王呈栋, 黄舒, 等.6061-T6铝合金紧凑拉伸试样激光喷丸强化后的疲劳裂纹扩展性能研究[J].中国激光, 2011, 38(7): 1-6.
    [23] CAO X J, PYOUN Y S, MURAKAMI R. Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification[J].Appl Surf Sci, 2010, 256(21): 6297-6303.
    [24] WAGNER L. Mechanical surface treatments on titanium, aluminum and magnesium alloys[J].Mater Sci Eng: A, 1999, 263: 210-216.
    [25] WU X, TAO N, HONG Y, et al. Microstructure and evolution of mechanically induced ultrafine grain in surface layer of AL-alloy subjected to USSP[J].Acta Mater, 2002, 50(8): 2075-2084.
    [26] 刘刚, 周蕾. 工程金属材料的表面纳米化技术[J].纳米科技, 2006, 3(1): 56-60.
    [27] LEE C J, MURAKAMI R, SUH C M. Fatigue properties of aluminum alloy(A6061-T6) with ultrasonic nano-crystal surface modification[J].Inter J Modern Phy: B, 2010, 24(15): 2512-2517.
    [28] WANG Q Y, KAWAGOISHI N, CHEN Q. Fatigue and fracture behaviour of structural Al-alloys up to very long life regimes[J].Int J Fatigue, 2006, 28: 1572-1576.
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-19
  • 刊出日期:  2014-10-19

目录

    /

    返回文章
    返回