[1] |
LU K, LU J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach[J].J Mater Sci Technol, 1999, 15(3): 193-197.
|
[2] |
ZHU K Y, VASSEL A, BRISSET F, et al. Nanostructure formation mechanism of α-titanium using SMAT[J].Acta Mater, 2004, 52(14): 4101-4110.
|
[3] |
LIU G, WANG S C, LOU X F, et al. Low carbon steel with nanostructured surface layer induced by high-energy shot peening[J].Scripta Mater, 2001, 44: 1791-1795.
|
[4] |
MORDYUK B N, MILMAN Y V, IEFIMOV M O, et al. Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel[J].Surf Coat Tech, 2008, 202(19): 4875-4883.
|
[5] |
WANG T, WANG D P, LIU G, et al. Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing[J].Appl Surf Sci, 2008, 255(5): 1824-1829.
|
[6] |
SUH C M, SONG G H, SUH M S, et al. Fatigue and mechanical characteristics of nanostructured tool steel by ultrasonic cold forging technology[J].Mater Sci Eng: A, 2007, 443: 101-106.
|
[7] |
SUN H Q, SHI Y N, ZHANG M X. Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer[J].Surf Coat Tech, 2008, 202(13): 2859-2864.
|
[8] |
VILLEGAS J C, SHAW L L, DAI K, et al. Enhanced fatigue resistance of a nickel-based hastelloy induced by a surface nanocrystallization and hardening process[J].Philos Mag Lett, 2005, 85(8): 427-438.
|
[9] |
LI D, CHEN H N, XU H. The effect of nanostructured surface layer on the fatigue behaviors of a carbon steel[J].Appl Surf Sci, 2009, 255(6): 3811-3816.
|
[10] |
李东, 陈怀宁, 徐宏.表面纳米化对SS400钢应力腐蚀性能的影响[J].腐蚀与防护, 2009, 30(2): 84-86.
|
[11] |
陆晓峰, 廖明刚, 朱晓磊, 等.表面纳米化处理对Cr5Mo钢流动加速腐蚀性能影响[J].机械工程材料, 2014, 38(5): 66-70.
|
[12] |
WANG K, TAO N R, LIU G, et al. Plastic strain-induced grain refinement at the nanometer scale in copper[J].Acta Mater, 2006, 54(19): 5281-5291.
|
[13] |
ZHANG H W, HEI Z K, LIU G, et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment[J].Acta Mater, 2003, 51(7): 1871-1881.
|
[14] |
WU X, TAO N, HONG Y, et al. Strain-induced grain refinement of cobalt during surface mechanical attrition treatment[J].Acta Mater, 2005, 53(3): 681-691.
|
[15] |
SUN H Q, SHI Y N, ZHANG M X, et al. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy[J].Acta Mater, 2007, 55(3): 975-982.
|
[16] |
MUKHANOV I I, GOLUBEV Y M. Hardening of steel details by ball vibrating with ultrasonic frequency[J].Machine Building Bulletin, 1966, 11: 52-59.
|
[17] |
SUH C M, KIM M H, BAEK U B, et al. A study on the alternative technology using UNSM instead of the presetting method for torsion bar[J].Int J Mod Phys: B, 2010, 24(15/16): 2435-2440.
|
[18] |
DAI K, VILLEGAS J, STONE Z, et al. Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process[J].Acta Mater, 2004, 52(20): 5771-5782.
|
[19] |
JAFARI M, ENAYATI M H, ABBASI M H, et al. Compressive and wear behaviors of bulk nanostructured Al2024 alloy[J].Material and Design, 2010, 31(2): 663-669.
|
[20] |
MAJZOOBI G H, AZADIKHAH K, NEMATI J. The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6[J].Mater Sci Eng: A, 2009, 516: 235-247.
|
[21] |
朱其芳, 孙泽明, 朱宝宏, 等.超声冲击纳米化对7B04高强铝合金疲劳性能的影响[J].纳米科技, 2009, 6(6): 25-28.
|
[22] |
周建忠, 王呈栋, 黄舒, 等.6061-T6铝合金紧凑拉伸试样激光喷丸强化后的疲劳裂纹扩展性能研究[J].中国激光, 2011, 38(7): 1-6.
|
[23] |
CAO X J, PYOUN Y S, MURAKAMI R. Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification[J].Appl Surf Sci, 2010, 256(21): 6297-6303.
|
[24] |
WAGNER L. Mechanical surface treatments on titanium, aluminum and magnesium alloys[J].Mater Sci Eng: A, 1999, 263: 210-216.
|
[25] |
WU X, TAO N, HONG Y, et al. Microstructure and evolution of mechanically induced ultrafine grain in surface layer of AL-alloy subjected to USSP[J].Acta Mater, 2002, 50(8): 2075-2084.
|
[26] |
刘刚, 周蕾. 工程金属材料的表面纳米化技术[J].纳米科技, 2006, 3(1): 56-60.
|
[27] |
LEE C J, MURAKAMI R, SUH C M. Fatigue properties of aluminum alloy(A6061-T6) with ultrasonic nano-crystal surface modification[J].Inter J Modern Phy: B, 2010, 24(15): 2512-2517.
|
[28] |
WANG Q Y, KAWAGOISHI N, CHEN Q. Fatigue and fracture behaviour of structural Al-alloys up to very long life regimes[J].Int J Fatigue, 2006, 28: 1572-1576.
|