Erosive Wear Resistance of Siliconizing Layer Prepared on Industrial Pure Copper Surface Using Gangue as Siliconizing Medium
-
摘要: 以煤矸石为渗硅剂、铝粉为还原剂, 采用固体粉末包埋法在850 ℃下保温12 h对工业纯铜进行渗硅处理, 获得了600 μm厚的渗硅层; 利用X射线衍射仪、扫描电镜等分析了渗硅层的物相组成和截面形貌, 并测试了渗硅层的显微硬度和冲蚀磨损性能。结果表明: 渗硅层内新生成了Cu0.83Si0.17、Cu4Si、Cu3Al和Cu9Si相, 横截面组织由扩散层的亚共析体α+(α+γ)相、过渡层的α相和纯铜基体呈梯度组成; 渗硅层的最高显微硬度相对纯铜基体提高了3.74倍; 当冲蚀介质的水砂比为50∶16~50∶40时, 渗硅层的冲蚀磨损性能较工业纯铜的提高了1.65~2.40倍; 当转速为200~400 r·min-1时, 渗硅层的冲蚀磨损性能较工业纯铜的提高了1.78~2.25倍; 当冲蚀角为30°~90°时, 渗硅层的冲蚀磨损性能较工业纯铜的提高了1.22~2.62倍。Abstract: Using gangue as siliconing medium and Al powders as reducing agent, the siliconizing layer with thickness of 600 μm was prepared on industrial pure copper surface at 850 ℃ for 12 h by the method of solid powders pack comentation. The phase composition and cross sectional morphology of the siliconizing layer were analyzed by X-ray diffractometer and scanning electron microscopy, and the microhardness and erosive wear resistance of the siliconizing layer were tested as well. The results show that the new phases including Cu0.83Si0.17,Cu4Si,Cu3Al and Cu9Si were existed in the siliconizing layer which were made up of α+(α+γ) phases in diffusion layer, α phase in transition layer and pure copper. The maximum microhardness of the siliconizing layer increased by 3.74 times compared with the pure copper and when the ratios of water to sand in erosive medium ranged from 50∶16 to 50∶40, the erosive wear resistance of the siliconizing layer increased by 1.65-2.40 times, when the rotation rates ranged from 200 r·min-1 to 400 r·min-1, the erosive wear resistance of the siliconizing layer increased by 1.78-2.25 times, when the erosive angles ranged from 30° to 90°, the erosive wear resistance of the siliconizing layer increased by 1.22-2.62 times.
-
Keywords:
- gangue /
- siliconizing /
- industrial pure copper /
- erosive wear resistance
-
-
[1] YANG Quan-bing, LV Miao-xiong, LUO Yong-bing. Effects of surface-activated coal gangue aggregates on properties of cement-based materials[J].Journal of Wuhan University of Technology-Mater Sci Ed,2013,28(6):1118-1121. [2] 宋洋, 赵禹, 祝百茹. 煤矸石轻集料混凝土性能试验研究[J].非金属矿,2014,37(1):28-30. [3] TIAN Dong-mei, YAO Jian, JIANG Zhong-an, et al. The experimental study of the coal gangue as gel filling materials[J].Journal of Coal Science and Engineering,2008,14(1):125-130. [4] 白志民,李桂金,金玥,等.硅酸盐固体废弃物(煤矸石)应用的研究进展[J].硅酸盐学报,2010,38(7):1357-1361. [5] ZHANG L Y, ZHANG H Y, GUO W, et al. Sorption characteristics and mechanisms of ammonium by coal by-products: slag, honeycomb-cinder and coal gangue[J]. International Journal of Environmental Science and Technology,2013,10(6):1309-1318. [6] 孙文标,冯向鹏.[Si(Al)O4]四面体聚合度对Na+固化性能的影响[J].机械工程材料, 2009,33(6):40-44. [7] 徐新阳,陈熙,宫璇,等.煤矸石制备聚合氯化铝的试验研究及应用[J].安全与环境学报,2012,11(4):46-49. [8] 曹新鑫,张艳珠,贺超峰,等.煤矸石/聚丙烯复合材料的非等温结晶动力学[J].机械工程材料,2013,37(10):50-54. [9] 马壮,陶莹,董世知,等.煤炭固体废弃物在金属材料热加工领域的应用[J].煤炭学报,2014,39(1):32-39. [10] 汪鸣,赵学龙.铜及铜合金管在海洋工程中的应用简述[C]//中国铜加工技术与应用论坛文集.上海: 中国有色金属加工工业协会,2008: 269-281. [11] 赵九夷. 我国海洋耐蚀防污铜合金研究及其应用[J].特种铸造及有色合金,2006,26(6):390-392. [12] 王阳阳, 吕振林, 王红洁. 颗粒级配对注浆成型反应烧结SiC陶瓷冲蚀磨损性能的影响[J]. 机械工程材料,2013,37(11):77-81. [13] 上官倩芡,程先华.稀土对38CrMoAl钢软氮化层抗冲蚀磨损性能的影响[J].中国稀土学报,2004,22(1):138-141. [14] 王红星,柳秉毅,杨少锋,等.CeO2对渗Si层组织和耐磨性能的影响[J].材料热处理学报,2013,34(5):170-174. [15] 庄秉寰.铜合金上渗硅层的耐磨耐蚀性[J].华东化工学院学报,1992,18(1):42-47. [16] 李运刚,田薇,方秀君.制备工艺参数对Cu表面Cu/Si梯度层断面显微组织的影响[J].材料工程,2013(2):65-68.
计量
- 文章访问数: 4
- HTML全文浏览量: 0
- PDF下载量: 0