高级检索
    周里群, 邱奕, 吴义彬, 李玉平. Cr18Mn18N奥氏体不锈钢磨削过程温度场及热应力耦合的有限元模拟[J]. 机械工程材料, 2014, 38(4): 96-99.
    引用本文: 周里群, 邱奕, 吴义彬, 李玉平. Cr18Mn18N奥氏体不锈钢磨削过程温度场及热应力耦合的有限元模拟[J]. 机械工程材料, 2014, 38(4): 96-99.
    ZHOU Li-qun, QIU Yi, WU Yi-bin, LI Yu-ping. FEM Simulation of Temperature Field and Thermal Stress Coupling in Grinding for Cr18Mn18N Austenitic Stainless Steel[J]. Materials and Mechanical Engineering, 2014, 38(4): 96-99.
    Citation: ZHOU Li-qun, QIU Yi, WU Yi-bin, LI Yu-ping. FEM Simulation of Temperature Field and Thermal Stress Coupling in Grinding for Cr18Mn18N Austenitic Stainless Steel[J]. Materials and Mechanical Engineering, 2014, 38(4): 96-99.

    Cr18Mn18N奥氏体不锈钢磨削过程温度场及热应力耦合的有限元模拟

    FEM Simulation of Temperature Field and Thermal Stress Coupling in Grinding for Cr18Mn18N Austenitic Stainless Steel

    • 摘要: 针对Cr18Mn18N奥氏体不锈钢的材料属性和难磨削的加工特点, 采用矩形热源模型和三角形热源模型对其平面磨削过程进行了三维有限元模拟, 获得了工件的磨削温度和热应力分布情况; 分析了热源模型、磨削深度对磨削温度场及热应力场的影响, 并与45钢磨削的试验结果进行了对比。结果表明: Cr18Mn18N奥氏体不锈钢最高磨削温度可达651 ℃, 最大磨削热应力可达285 MPa; 模拟值和45钢试验结果基本一致, 说明Cr18Mn18N钢磨削加工模型是比较可靠的。

       

      Abstract: According to the material properties of Cr18Mn18N austenitic stainless steel and the grinding characteristics of difficult-to-machine material, a 3-D FEM simulation for the surface grinding process was carried out using rectangular and trianglar heat source models to obtain the temperature distribution and thermal stress distribution of a workpiece. The effects of heat source model, grinding depth on grinding temperature field and thermal stress field were analyzed. Contrast analysis with 45 steel has been done to verify the validity of the model of grinding process. The maximal grinding temperature of Cr18Mn18N austenitic stainless steel reached 651 ℃, and maximal grinding thermal stress reached 285 MPa. The simulated result coincided with experimental result of 45 steel, which proved the grinding model for Cr18Mn18N steel was reliable.

       

    /

    返回文章
    返回