高级检索
    李健, 尹莉, 李文戈, 吴钱林. 激光反应熔覆碳化物陶瓷涂层温度场的有限元模拟[J]. 机械工程材料, 2012, 36(6): 86-89.
    引用本文: 李健, 尹莉, 李文戈, 吴钱林. 激光反应熔覆碳化物陶瓷涂层温度场的有限元模拟[J]. 机械工程材料, 2012, 36(6): 86-89.
    LI Jian, YIN Li, LI Wen-ge, WU Qian-lin. Finite Element Simulation for Laser Reaction Cladding Temperature Field of Carbide Ceramics Coating[J]. Materials and Mechanical Engineering, 2012, 36(6): 86-89.
    Citation: LI Jian, YIN Li, LI Wen-ge, WU Qian-lin. Finite Element Simulation for Laser Reaction Cladding Temperature Field of Carbide Ceramics Coating[J]. Materials and Mechanical Engineering, 2012, 36(6): 86-89.

    激光反应熔覆碳化物陶瓷涂层温度场的有限元模拟

    Finite Element Simulation for Laser Reaction Cladding Temperature Field of Carbide Ceramics Coating

    • 摘要: 利用ANSYS软件建立预置式粉层激光反应熔覆的数值模拟模型, 考虑了相变潜热、辐射对流散热、表面效应单元等因素的影响; 在不同的工艺参数下, 用该模型对激光反应熔覆碳化物陶瓷涂层温度场进行了计算, 分析了整个激光加工过程中温度场的变化情况。结果表明: 激光功率和扫描速度对基体熔化厚度以及熔覆层宽度的影响都比较显著; 激光功率是造成熔覆层较大温度梯度的主要因素; 有限元模拟得到的最佳工艺参数得到了试验验证。

       

      Abstract: Established numerical simulation model of preset style powder layer for laser reaction cladding based on ANSYS softwear, considering the effect of latent heat of phase change, radiation and convection heat dissipation and surface effect units, etc. The laser reaction cladding temperature field of carbide ceramics coating was calculated by the model under different processing parameters, and the changes of temperature field during the laser process was analyzed. The results show that laser power and scanning rate had more significant effect on the melt thickness of the substrate and the cladding layer width, and the laser power was the main effect factcr to cause fairly high temperature gradient in cladding layer. The optimal process parameters obtained from finite element simulation was validated by test.

       

    /

    返回文章
    返回