• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

不同改性剂制备疏水SiO2气凝胶的对比

卢斌, 陈琴, 曾杰

卢斌, 陈琴, 曾杰. 不同改性剂制备疏水SiO2气凝胶的对比[J]. 机械工程材料, 2011, 35(6): 53-57.
引用本文: 卢斌, 陈琴, 曾杰. 不同改性剂制备疏水SiO2气凝胶的对比[J]. 机械工程材料, 2011, 35(6): 53-57.
LU Bin, CHEN Qin, ZENG Jie. Comparison of Hydrophobic Silica Aerogels Prepared by Different Modifiers[J]. Materials and Mechanical Engineering, 2011, 35(6): 53-57.
Citation: LU Bin, CHEN Qin, ZENG Jie. Comparison of Hydrophobic Silica Aerogels Prepared by Different Modifiers[J]. Materials and Mechanical Engineering, 2011, 35(6): 53-57.

不同改性剂制备疏水SiO2气凝胶的对比

基金项目: 

湖南省科技计划项目(06GK2022)

详细信息
    作者简介:

    卢斌(1962-), 男, 湖南长沙人, 副教授, 博士。

  • 中图分类号: TB32; TB34

Comparison of Hydrophobic Silica Aerogels Prepared by Different Modifiers

  • 摘要: 以正硅酸乙酯(TEOS)及异丙醇(IPA)为原料, 以六甲基二硅胺烷(HMDZ)、三甲基氯硅烷(TMCS)为改性剂, 采用溶胶-凝胶法、衍生法及超临界干燥工艺, 制备了疏水SiO2气凝胶;采用SEM、IR、XRD及TG等对其进行了表征。结果表明: 两种表面改性剂改性前后获得的SiO2疏水气凝胶均含有非晶态SiO2相, 均由Si-O-Si所组成的纳米多孔连续三维网络骨架结构构成, 骨架平均直径为3 nm;改性后的SiO2气凝胶在450 ℃前几乎没有质量损失, 450~600 ℃内, TMCS和HMDZ改性的SiO2气凝胶质量损失分别约为17%和9.21%;TMCS改性后的SiO2气凝胶密度由改性前的0.192 g·cm-3减至0.149 g·cm-3, 比孔体积由改性前的4.70 cm3·g-1增至6.19 cm3·g-1, 接触角达到了157°, 吸水率仅为1.5%;HMDZ改性后的密度为0.181 g·cm-3, 比孔体积为5.01 cm3·g-1, 接触角为120°, 吸水率达2.5%, 疏水改性效果比TMCS差。
    Abstract: Hydrophobic silica aerogels were prepared by tetraethoxysilane(TEOS) and isopropanol (IPA) as raw materials, hexamethyldisilazane (HMDZ) and trimethylchlorosilane(TMCS) as modifier through sol-gel method, derivatization and followed by supercritical drying process, and they were characterized by means of SEM, IR, XRD, TG and so on. The results indicate that the hydrophobic silica aerogels before and after modification both had amorphous silica phase, which consisted of nano-porous continuous three-dimensional network skeleton by Si-O-Si, and the average diameter of skeleton was 3 nm. The silica aerogels after modification virtually had no mass loss before 450 ℃. However, when temperature was increased from 450 ℃ to 600 ℃, the mass loss of the silica arogels modified by TMCS and HMDZ reached 17% and 9.21% respectively. After TMCS modification, the density of silica aerogel reduced from 0.192 g·cm-3 to 0.149 g·cm-3, porous volume increased from 4.70 cm3·g-1 to 6.19 cm3·g-1, contact angle reached 157°, and water absorption was only 1.5%. The density of silica aerogel modified by HMDZ was 0.181 g·cm-3, porous volume was 5.01 cm3·g-1, contact angle was 120°, water absorption was 2.5%, and its hydrophobic effect was lower than modified by TMCS.
  • [1] EMMERLING A, FRICKE J. Small angle scattering and the structure of aerogels[J].Journal of Non-Crystalline Solids, 1992, 145: 113-120.
    [2] ARMOR J N, CARLSON E J, ZAMBRI P M. Aerogels as hydrogenation catalysts[J].Applied Catalysis, 1985, 19: 339-348.
    [3] TILLOTSON T M, HRUBESH L W. Transparent ultralow-density silica aerogels prepared by a two-step solgel process[J].Journal of Non-Crystalline Solids, 1992, 145: 44-50.
    [4] CANTIN M, CASSE M, KOCH L, et al. Silica aerogels used as Cherenkov radiators[J]. Nuclear Instruments and Methods, 1974, 118 (1): 177-182.
    [5] FRICKE J, CAPS R, BVTTNER D. Structural elasto-mechanical and thermal properties of silica aerogels[J].Studies in Surface Science and Catalysis, 1988, 39: 629-634.
    [6] LIU Hui-juan, SHA Wei, COOPER A T, et al. Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 347(1/3): 38-44.
    [7] TANDEKER S, NOVAK Z, KNEZ . Adsorption of toxic organic compounds from water with hydrophobic silica aerogels[J].Journal of Colloid and Interface Science, 2007, 310(2): 362-368.
    [8] LEE K, KIM S, YOO K. Low-density, hydrophobic aerogels[J]. Journal of Non-Crystalline Solids, 1995, 186: 18-22.
    [9] RAO A V, PAJONK G M, BHAGAT S D, et al. Comparative studies on the surface chemical modification of silica aerogels based on various organosilane compounds of the type RnSiX4-n[J]. Journal of Non-Crstalline Solids, 2004, 350: 216-223.
    [10] 周小春, 钟华.表面修饰对常压干燥SiO2气凝胶的研制[J].化学工程, 2007, 35(1): 52-55.
    [11] 张志华, 倪星元, 沈军, 等.疏水型SiO2气凝胶的常压制备及吸附性能研究[J].同济大学学报, 2005, 33(12): 1641-1645.
    [12] 陈素芬, 李波, 刘一杨, 等. 三甲基硅烷化改性二氧化硅气凝胶[J]. 强激光与粒子束, 2009, 21(1): 76-78.
    [13] MEZZA P, PHALIPPOU J, SEMPERE R. Sol-gel derived porous slica films[J]. Journal of Non-Crystalline Solids, 1999, 243: 75-79.
    [14] RAO A P, RAO A V, PAJONK G M. Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface mo-dification agents[J]. Applied Surface Science, 2007, 253: 6032-6040.
    [15] HRUBESH L W, CORONADO P R, SATCHER J H. Solvent removal from water with hydrophobic aerogels[J]. Journal of Non-Crystalline Solids, 2001, 285: 328-332.
    [16] 邓忠生, 魏建东, 吴爱梅, 等. 疏水性SiO2气凝胶[J]. 无机材料学报, 2000, 15(2): 381-384.
    [17] WAGH P B, INGALE S V. Comparison of some physico-chemical properties of hydrophilic and hydrophobic silica aerogels[J]. Ceramics International, 2002, 285: 43-50.
    [18] HIEMENZ P C, RAJAGOPALAN R. Principles of colliod and surface chemistry[M]. New York: Marcel Dekker Inc, 1997.
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-06
  • 刊出日期:  2011-06-19

目录

    /

    返回文章
    返回