Influence of Sn on Microstructure and Tensile Property of Mg-5Zn-1Mn Alloy
-
摘要: 对铸态Mg-5Zn-1Mn-xSn(x分别为0,0.3,0.6,0.9,质量分数/%)合金进行了330℃×24 h+400℃×2 h的均匀化处理,然后在应变速率为9.1 s-1条件下轧制成厚度为2 mm的合金板,研究了锡添加量对铸态和轧制态合金显微组织和拉伸性能的影响。结果表明:锡的添加可以细化试验合金的铸态及其均匀化处理后的显微组织,并形成高熔点Mg2Sn相,促进后续轧制过程中试验合金的动态再结晶并细化晶粒;经轧制后,试验合金的拉伸性能优于其铸态的,且随着锡含量的增加,轧制态合金的强度与塑性呈先上升后下降的变化趋势,其断裂形式从准解理断裂逐渐向延性断裂转变;Mg-5Zn-1Mn-0.6Sn合金的拉伸性能最佳,其抗拉强度和伸长率分别为337 MPa和21%。
-
关键词:
- Mg-Zn-Mn-Sn合金 /
- 动态再结晶 /
- 显微组织 /
- 拉伸性能
Abstract: The as-cast Mg-5Zn-Mn-xSn (x=0, 0.3, 0.6, 0.9, mass fraction/%) alloys were homogenized with process of 330℃×24 h+400℃×2 h, and then rolled into 2 mm thick alloy plates at the strain rate of 9.1 s-1. The influence of Sn addition on the microstructures and tensile properties of as-cast and as-rolled alloys was studied.The results show that the Sn addition can refine the microstructure of the as-cast alloys and homogenized alloys, leading to the formation of the Mg2Sn phase with high melting point, which can promote the dynamic recrystallization and refine the grain size during the subsequent rolling process. After rolling, the tensile property of the tested alloy was better than that of as-cast alloy. Meanwhile with the increase of Sn content, the strength and plasticity of as-rolled alloy first increased then decreased, and the fracture mode transformed from quasi-cleavage fracture to plastic fracture. The tensile property of Mg-5Zn-1Mn-0.6Sn alloy was the best with the tensile strength and elongation of 337 MPa and 21%, respectively.-
Keywords:
- Mg-Zn-Mn-Sn alloy /
- dynamic recrystallization /
- microstructure /
- tensile property
-
-
[1] 刘龙飞, 姜炳春, 赵俊,等. 冲击载荷下AZ31镁合金的变形行为和组织演变[J]. 机械工程材料, 2015, 39(1):24-28. [2] 郜瑞,温彤,季筱玮,等. 工艺参数对AZ31镁合金板拉深成形性能的影响[J]. 机械工程材料, 2013, 37(3):87-89. [3] 陈鼎,蒋琼,姜勇,等. 深冷处理对铸态ZK60镁合金显微组织和力学性能的影响[J]. 机械工程材料, 2011, 35(2):16-19. [4] 张丁非,齐福刚,石国梁,等. Mn含量对Mg-Zn-Mn变形镁合金显微组织和力学性能的影响[J]. 稀有金属材料与工程,2010,39(12):2205-2210. [5] CHEN J H, CHEN Z H,YAN H G, et al. Effects of Sn addition on microstructure and mechanical properties of Mg-Zn-Al alloys[J]. Journal of Alloys & Compounds, 2008, 461(1/2):209-215.
[6] HOU X L, SUN X, WANG L M,et al. Effects of microstructure and texture on the mechanical properties of extruded Mg-Gd-Nd-Y-Zn alloy[J]. Advanced Materials Research, 2012, 509:68-74.
[7] QI F G, ZHANG D F, ZHANG X H,et al. Effect of Sn addition on the microstructure and mechanical properties of Mg-6Zn-1Mn alloy[J]. Journal of Alloys and Compounds, 2013, 585(3):656-666.
[8] ZHU S Q, YAN H G, CHEN J H, et al. Feasibility of high strain-rate rolling of a magnesium alloy across a wide temperature range[J]. Scripta Materialia, 2012, 67(4):404-407.
[9] ZHU S Q, YAN H G, CHEN J H,et al. Effect of twinning and dynamic recrystallization on the high strain rate rolling process[J]. Scripta Materialia, 2010, 63(10):985-988.
[10] WATANABE H, TSUTSUI H, MUKAI I,et al. Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization[J]. Materials Transactions-JIM, 2001, 42(7):1200-1205.
[11] MUZYK M, PAKIELA Z, KURZYDLOWSKI K J. Generalized stacking fault energy in magnesium alloys:Density functional theory calculations[J]. Scripta Materialia, 2012, 66(5):219-222.
[12] ZHANG H Y, WANG H Y, WANG C,et al. First-principles calculations of generalized stacking fault energy in Mg alloys with Sn, Pb and Sn+Pb dopings[J]. Materials Science & Engineering A, 2013, 584:82-87.
[13] 陈振华. 变形镁合金[M]. 北京:化学工业出版社,2005. [14] BEER A G, BARNETT M R. Microstructural development during hot working of Mg3Al1Zn[J]. Metallurgical & Materials Transactions A, 2007, 38(8):1856-1867.
[15] PARK S H, YU H, BAE J H,et al. Microstructural evolution of indirect-extruded ZK60 alloy by adding Ce[J]. Journal of Alloys & Compounds, 2012, 545(51):139-143.
[16] KUBOTA K, MABUCHI M, HIGASHI K. Review processing and mechanical properties of fine-grained magnesium alloys[J]. Journal of Materials Science, 1999, 34(10):2255-2262.
计量
- 文章访问数: 3
- HTML全文浏览量: 0
- PDF下载量: 0