Page 14 - 机械工程材料2024年第十一期
P. 14

姜丽云,等:工程领域负刚度超材料的研究进展


              阻尼器、新型驱动器、缓冲吸能结构、隔振和吸声                              [7] 谭小俊. 负刚度力学超材料设计及其性能研究[D]. 哈

              结构、封装工艺、运动装备和医疗器械等多个方面,                                尔滨:哈尔滨工业大学,2022:51-107.
              但目前仍处于研究阶段,还面临缺乏多维多向的复                                 TAN  X  J.  Design  and  properties  of  negative  stiffness
              杂结构、方向依赖性较强、吸能效果受限以及整体                                 mechanical  metamaterials[D]. Harbin:Harbin  Institute
                                                                     of Technology,2022:51-107.
              结构力学性能较弱等问题,未来研究将集中在以
                                                                  [8] CHEN  S,LIU  X,HU  J  Q,et  al.  Elastic  architected

              下几个方面:(1) 考虑材料在实际应用中的多物理
                                                                     mechanical  metamaterials  with  negative  stiffness  effect
              场耦合作用,如力-热耦合、力-电耦合等来进行综                                for  high  energy  dissipation  and  low  frequency  vibration
              合设计并充分开发材料性能;(2) 通过优化结构设                               suppression[J]. Composites Part B:Engineering,2023,
              计、采用高性能材料和引入增强机制,以提升材料                                 267:111053.
              力学性能;(3) 研究多维多向的负刚度超材料,设计                           [9] 王竞哲,陈保才,朱绍伟,等. 圆锥形负刚度超材料吸

              出各种复杂结构,从而满足不同工程领域的需求;                                 能性能研究[J]. 应用数学和力学,2023,44(10):1172-

             (4) 深入研究负刚度超材料在不同环境下的耐久性                                1179.
              和可靠性,并提出相应的改进措施;(5) 基于目标性                              WANG  J  Z,CHEN  B  C,ZHU  S  W,et  al.  Study  on
                                                                     energy  absorption  performances  of  conical  negative
              能或应用条件,实现结构的逆向设计;(6) 运用拓扑
                                                                     stiffness  metamaterials[J]. Applied  Mathematics  and
              优化、机器学习等方法探索新的设计思路;(7)开发
                                                                     Mechanics,2023,44(10):1172-1179.
              经济、高效的制备工艺来推动负刚度超材料的大规                              [10] PAN Y,ZHOU Y,WANG M,et al. A novel reinforced

              模生产和应用。                                                cylindrical  negative  stiffness  metamaterial  for  shock
                                                                     isolation:Analysis  and  application[J]. International
              参考文献:
                                                                     Journal of Solids and Structures,2023,279:112391.

                [1] PRASAD J,DIAZ A R. Synthesis of bistable periodic     [11] 潘怡,王萌,周阳,等. 新型负刚度超材料吸能结构的

                   structures  using  topology  optimization  and  a  genetic   设计与优化[J]. 振动与冲击,2023,42(6):180-187.
                   algorithm[J]. Journal of Mechanical Design,2006,128       PAN  Y,WANG  M,ZHOU  Y,et  al.  Design  and
                  (6):1298-1306.                                     optimization  of  a  new  energy  absorbing  structure  with

                [2] MEHREGANIAN  N,FALLAH  A  S,SAREH  P.            negative  stiffness  metamaterial[J]. Journal  of  Vibration
                   Structural  mechanics  of  negative  stiffness  honeycomb   and Shock,2023,42(6):180-187.

                   metamaterials[J]. Journal of Applied Mechanics,2021,    [12] TAN X J,WANG B,YAO Y T,et al. Programmable
                   88(5):051006.                                     Buckling-based  negative  stiffness  metamaterial[J].
                [3] 任晨辉. 船舶负刚度超材料与结构的设计方法和性能                         Materials Letters,2020,262:127072.


                   研究[D]. 上海:上海交通大学,2020:43-64.                   [13] TAN  X  J,WANG  L  C,ZHU  S  W,et  al.  A  general
                   REN C H. Research on design method and mechanical   strategy  for  performance  enhancement  of  negative
                   properties  of  negative  stiffness  metamaterials  and   stiffness mechanical metamaterials[J]. European Journal
                   structures  of  ships[D]. Shanghai:Shanghai  Jiao  Tong   of Mechanics/A Solids,2022,96:104702.

                   University,2020:43-64.                         [14] CHEN  B  C,CHEN  L  M,DU  B,et  al.  Novel
                [4] ZHU  S  W,TAN  X  J,CHEN  S,et  al.  Quasi-all-  multifunctional  negative  stiffness  mechanical

                   directional  negative  stiffness  metamaterials  based  on   metamaterial structure:Tailored functions of multi-stable
                   negative  rotation  stiffness  elements[J]. Physica  Status   and  compressive  mono-stable[J]. Composites  Part  B:
                   Solidi (B),2020,257(6):1900538.                   Engineering,2021,204:108501.

                [5] GUO  S,GAO  R  J,TIAN  X  Y,et  al.  A  3D     [15] ZHU Z S,WEI R,ZHANG H,et al. Cat paw-inspired

                   metamaterial  with  negative  stiffness  for  six-directional   magnetorheological  elastomer  embedded  mechanical
                   energy  absorption  and  cushioning[J]. Thin-Walled   metamaterials with active sensing and switching stiffness
                   Structures,2022,180:109963.                       for  vibration  isolator[J]. Sustainable  Materials  and

                [6] FOSSAT P,KOTHAKOTA M,ICHCHOU M,et al.            Technologies,2024,40:e00954.

                   Dynamic  bending  model  describing  the  generation  of     [16] 刘隽畅. 基于深度学习的微结构单胞性质预测及设
                   negative stiffness by buckled beams:Qualitative analysis   计[D]. 大连:大连理工大学,2021.
                   and  experimental  verification[J]. Applied  Sciences,      LIU  J  C.  Prediction  and  generation  of  microstructure
                   2023,13(16):9458.                                 with  deep  learning[D]. Dalian:Dalian  University  of

               6
   9   10   11   12   13   14   15   16   17   18   19