Page 14 - 机械工程材料2024年第十一期
P. 14
姜丽云,等:工程领域负刚度超材料的研究进展
阻尼器、新型驱动器、缓冲吸能结构、隔振和吸声 [7] 谭小俊. 负刚度力学超材料设计及其性能研究[D]. 哈
结构、封装工艺、运动装备和医疗器械等多个方面, 尔滨:哈尔滨工业大学,2022:51-107.
但目前仍处于研究阶段,还面临缺乏多维多向的复 TAN X J. Design and properties of negative stiffness
杂结构、方向依赖性较强、吸能效果受限以及整体 mechanical metamaterials[D]. Harbin:Harbin Institute
of Technology,2022:51-107.
结构力学性能较弱等问题,未来研究将集中在以
[8] CHEN S,LIU X,HU J Q,et al. Elastic architected
下几个方面:(1) 考虑材料在实际应用中的多物理
mechanical metamaterials with negative stiffness effect
场耦合作用,如力-热耦合、力-电耦合等来进行综 for high energy dissipation and low frequency vibration
合设计并充分开发材料性能;(2) 通过优化结构设 suppression[J]. Composites Part B:Engineering,2023,
计、采用高性能材料和引入增强机制,以提升材料 267:111053.
力学性能;(3) 研究多维多向的负刚度超材料,设计 [9] 王竞哲,陈保才,朱绍伟,等. 圆锥形负刚度超材料吸
出各种复杂结构,从而满足不同工程领域的需求; 能性能研究[J]. 应用数学和力学,2023,44(10):1172-
(4) 深入研究负刚度超材料在不同环境下的耐久性 1179.
和可靠性,并提出相应的改进措施;(5) 基于目标性 WANG J Z,CHEN B C,ZHU S W,et al. Study on
energy absorption performances of conical negative
能或应用条件,实现结构的逆向设计;(6) 运用拓扑
stiffness metamaterials[J]. Applied Mathematics and
优化、机器学习等方法探索新的设计思路;(7)开发
Mechanics,2023,44(10):1172-1179.
经济、高效的制备工艺来推动负刚度超材料的大规 [10] PAN Y,ZHOU Y,WANG M,et al. A novel reinforced
模生产和应用。 cylindrical negative stiffness metamaterial for shock
isolation:Analysis and application[J]. International
参考文献:
Journal of Solids and Structures,2023,279:112391.
[1] PRASAD J,DIAZ A R. Synthesis of bistable periodic [11] 潘怡,王萌,周阳,等. 新型负刚度超材料吸能结构的
structures using topology optimization and a genetic 设计与优化[J]. 振动与冲击,2023,42(6):180-187.
algorithm[J]. Journal of Mechanical Design,2006,128 PAN Y,WANG M,ZHOU Y,et al. Design and
(6):1298-1306. optimization of a new energy absorbing structure with
[2] MEHREGANIAN N,FALLAH A S,SAREH P. negative stiffness metamaterial[J]. Journal of Vibration
Structural mechanics of negative stiffness honeycomb and Shock,2023,42(6):180-187.
metamaterials[J]. Journal of Applied Mechanics,2021, [12] TAN X J,WANG B,YAO Y T,et al. Programmable
88(5):051006. Buckling-based negative stiffness metamaterial[J].
[3] 任晨辉. 船舶负刚度超材料与结构的设计方法和性能 Materials Letters,2020,262:127072.
研究[D]. 上海:上海交通大学,2020:43-64. [13] TAN X J,WANG L C,ZHU S W,et al. A general
REN C H. Research on design method and mechanical strategy for performance enhancement of negative
properties of negative stiffness metamaterials and stiffness mechanical metamaterials[J]. European Journal
structures of ships[D]. Shanghai:Shanghai Jiao Tong of Mechanics/A Solids,2022,96:104702.
University,2020:43-64. [14] CHEN B C,CHEN L M,DU B,et al. Novel
[4] ZHU S W,TAN X J,CHEN S,et al. Quasi-all- multifunctional negative stiffness mechanical
directional negative stiffness metamaterials based on metamaterial structure:Tailored functions of multi-stable
negative rotation stiffness elements[J]. Physica Status and compressive mono-stable[J]. Composites Part B:
Solidi (B),2020,257(6):1900538. Engineering,2021,204:108501.
[5] GUO S,GAO R J,TIAN X Y,et al. A 3D [15] ZHU Z S,WEI R,ZHANG H,et al. Cat paw-inspired
metamaterial with negative stiffness for six-directional magnetorheological elastomer embedded mechanical
energy absorption and cushioning[J]. Thin-Walled metamaterials with active sensing and switching stiffness
Structures,2022,180:109963. for vibration isolator[J]. Sustainable Materials and
[6] FOSSAT P,KOTHAKOTA M,ICHCHOU M,et al. Technologies,2024,40:e00954.
Dynamic bending model describing the generation of [16] 刘隽畅. 基于深度学习的微结构单胞性质预测及设
negative stiffness by buckled beams:Qualitative analysis 计[D]. 大连:大连理工大学,2021.
and experimental verification[J]. Applied Sciences, LIU J C. Prediction and generation of microstructure
2023,13(16):9458. with deep learning[D]. Dalian:Dalian University of
6

